Daffodil DB JDBC Reference Guide

J2EE Certified

Daffodil DB

JDBC Reference Guide

Version 4.1

March 2005

Daffodil DB JDBC Reference Guide

J2EE Certified

Copyright © Daffodil Software Limited
SCO 42, 3" Floor

Old Judicial Complex, Civil lines
Gurgaon - 122001

Haryana, India.

www.daffodildb.com

All rights reserved. Daffodil DB™ is a registered trademark of Daffodil Software Limited.
Java™ is a registered trademark of Sun Microsystems, Inc. All other brand and product
names are trademarks of their respective companies.

Daffodil DB)

http://www.daffodildb.com

Daffodil DB JDBC Reference Guide

J2EE Certified

Table of Contents

Preface ... e e e 5
PUIMDOSE. ... e)
Target AUdIENCE..........o i e 6

Related Documentation..........ccoovveiiiiciiciiecccre e 7

Daffodil DB and JDBC 3.0 ... e re e e 8
Daffodil DB JDBC DIiVEF......cccouuiiieeieeieeee e 8
JDBC 3.0 features supported by Daffodil DB..............cccevveiiens 9
Compatibilityoeoiiiee e 10

Fundamentals of Daffodil DB JDBC Driver..................... 11
How to access Daffodil DB through JDBC?..........ccooviiiiiiiiinnnnn. 11

IMpPOrt JDBC ClasSEs.uiiii e 11
Register/Load JDBC DIIVEN...........uuiiiiei e 11
Establishing a connection ... 12
EXAMIPIES ..o 12
Establishing a Connection with Read-Only Modecccccceiiiiiiiiiine, 13
Minimal Programcociie et e e e eeaanes 14
Different ways for loading Daffodil DB JDBC Driver 15
Different ways to connect to Daffodil DBccccovuiiiiiine. 16
Working with multiple connections in Daffodil DB....................... 17
Database Connection URL Attributesccoeiiiiiiiiiiiniennnnnn. 18
Creating and Dropping a Databaseccccccooevviviiiiiiceiinieee, 20
Database-level Encryption™.........cccoooiiiiiiiiii e, 21
Multiple Data File Support.........cccooveiiiiiieeece e 22

Standard JDBC Features.........ccccceiieiiiecivreece e e e, 23
DatalyPeS ... 23
Prepared Statements ..o 24
Callable Statements.............ooeiiiiiii i 25
Batch Operationsooiiiiiii i 26
RESUISEL ... 27
DatabaseMetaData.............cccoooiiiiiii 28
Transaction Isolation Level ..., 28

Advanced JDBC Featurescccccoirmimciiiiieciirececeerecnnn 29
SaAVEPOINTo 29

Daffodil DB 3

Daffodil DB JDBC Reference Guide

J2EE Certified

ROWS e .. 30
Connection POOIING.......ccoooiiiiiii e 31
Updatable ResultSet..........coooo i 32
Partial fetching in ResultSet.............ooviiiiiiii 32
Retrieving Parameter Metadata...............cccooooiiiiiiiinn, 33
Daffodil DB XA SUPPOIt™ ..o 34
Distributed Transaction CoONCEePtSuuuuiuiimiiiiiiee 35
Classes related to Resource Managersccoevvvvveeiiiiiiiiiiiiiiieeieeeenen. 37
Controlling JDBC Session properties........cccccecevreennnnnees 38
Avoiding DeadloCks.........cceeiiimimeiiirrcsrrrrecs e 40
ENA NOte ...t e e e e e 41
Sign Up for Support......... e 42
We Need Feedback! ... e r e e 43
License NotiCe.....on e e e e 44

* Features that are not supported in One$DB

Daffodil DB 4

Daffodil DB JDBC Reference Guide

J2EE Certified

Preface

Purpose

Daffodil DB JDBC Reference Guide explains how to use Daffodil DB and JDBC (Java
Database Connectivity) technology to develop applications. It provides instructions for
using JDBC within Daffodil DB Embedded edition as well as Networked edition. It walks
through the basic Daffodil DB and JDBC concepts like JDBC 3.0 features supported by
Daffodil DB, how to create and access Daffodil DB databases through JDBC API,
Daffodil DB support for JDBC and JTA, and how to use Daffodil DB in a Distributed
Transaction Processing environment.

For more comprehensive and up-to-date information on JDBC and JTA, please refer the
following resources:

. http://java.sun.com/products/jdbc

. http://java.sun.com/products/jta

. http://developer.java.sun.com/developer/Books/JDBCTutorial/

. http://java.sun.com/products/jdbc/download.html#corespec30
Daffodil DB 5

http://java.sun.com/products/jdbc
http://java.sun.com/products/jta
http://developer.java.sun.com/developer/Books/JDBCTutorial/
http://java.sun.com/products/jdbc/download.html#corespec30

Daffodil DB JDBC Reference Guide

J2EE Certified

Target Audience

This guide is intended to act as a ready reference tool for software developers building
applications using Daffodil DB through JDBC interface. This guide assumes that you are
familiar with the following concepts:

o Basis JDBC (Java Database Connectivity) Concepts.
o Basic SQL (Standard Query Language) Concepts.

o Fundamentals of Relational Database Concepts.

. Basic Java Programming Language.

o Familiar with your OS and Server/Client concepts.

It is also assumed that the reader has already gone through Getting Started with Daffodil
DB Guide.

Daffodil DB 6

http://www.daffodildb.com/PDF/Getting Started with Daffodil DB.pdf
http://www.daffodildb.com/PDF/Getting Started with Daffodil DB.pdf

Daffodil DB JDBC Reference Guide

J2EE Certified

Related Documentation

Daffodil DB Getting | Designed to help new and intermediate Daffodil DB users
Started Guide navigate and perform common tasks like How to start and stop
Daffodil DB, Understanding key variables used by Daffodil DB,
User documentation bundled with Daffodil DB. Also briefly
describes Daffodil DB Editions and Tools

Daffodil DB System | Describes the architecture of Daffodil DB and provides the
Guide information that the user might need to keep Daffodil DB running
with high performance and reliability in a server framework or a
multi-user application server. Also describes the standards on
which Daffodil DB had been built, transaction capabilities and
some of the unique features supported by Daffodil DB.

Daffodil DB SQL Covers all the SQL-99 features supported by Daffodil DB. This
Reference Guide ready reference tool describes in detail the syntax and semantics
of SQL language statements and elements for Daffodil DB. It
explains how to use SQL with Daffodil DB and how to perform
various database operations on Daffodil DB such as creating
tables or indexes, managing transactions and sessions, Daffodil
DB security features etc.

Daffodil DB Tools Explains how to use Daffodil DB Browser with Embedded as well
Guide as Server versions of Daffodil DB. Describes how to perform
various database operations on Daffodil DB using Daffodil DB
Browser such as creating a database, creating database objects,
manipulating data, creating triggers etc.

Daffodil DB PHP Explains how to talk to Daffodil DB through PHP interface.
Extension Guide Describes in detail about the supported PHP functions, with
which a wuser can easily perform various tasks like
connecting/disconnecting to a database, executing queries,
distributed transaction processing, manipulating the ResultSet
etc.

Daffodil DB 7

http://www.daffodildb.com/PDF/Getting Started with Daffodil DB.pdf
http://www.daffodildb.com/PDF/Daffodil DB System Guide.pdf
http://www.daffodildb.com/PDF/Daffodil DB SQL Reference Guide.pdf
http://www.daffodildb.com/PDF/Daffodil DB Tools Guide.pdf
http://www.daffodildb.com/PDF/Getting Started with Daffodil DB.pdf

Daffodil DB JDBC Reference Guide

J2EE Certified

Daffodil DB and JDBC 3.0

Daffodil DB JDBC driver implements standard JDBC 3.0 (Java Database Connectivity)
interface defined by Sun Microsystems. The core JDBC Application Program Interface
(API) consists of a set of call level interfaces found in the java.sql and javax.sql
packages. The JDBC API is used by Java applications to access and manipulate the
data stored in a database by invoking SQL commands.

Daffodil DB JDBC Driver

Daffodil DB JDBC driver supports JDBC 3.0 specifications and had been certified for
J2EE applications by Sun Microsystems Inc.

The Daffodil DB JDBC driver is a native protocol for all Java drivers (Type #4 among the
categories defined by Sun Microsystems). Type 4 drivers are direct-to-database, pure
Java drivers ("thin" driver). Type 4 drivers takes JDBC calls and translates them into the
network protocol (proprietary protocol) used directly by any Database Management
System (DBMS). Thus, client machines or application servers can make direct calls to
the DBMS server. Type 4 drivers provide faster performance and direct access to DBMS
features.

In the Embedded Edition of Daffodil DB (when invoked from an application running on
the same JVM as Daffodil DB), the JDBC driver supports connections to a Daffodil DB
database in the local mode. Network transport is not required to access the database. In
Networked (Client/Server) mode, the client application dispatches JDBC requests to the
Daffodil DB server over a network.

Applications running in embedded mode use a different driver from that used by
applications running in the client/server mode.

Daffodil DB 8

Daffodil DB JDBC Reference Guide

J2EE Certified

JDBC 3.0 features supported by Daffodil DB

API

Description

java.sql.BatchUpdateException

Provides information about errors occurring during
batch operations.

java.sql.Blob

Provides access to and manipulation of Binary
Large Object data (BLOB).

java.sql.CallableStatement

Provides access to and manipulation of Stored
Procedures.

java.sql.Clob

Provides access to and manipulation of Character
Large Object data(CLOB)

java.sql.Connection

Constructs and manages the connection to the
database and also provides metadata information
about the database

java.sql.DatabaseMetaData

Provides metadata about the database.

java.sql.Driver

Provides information about and the JDBC driver
and manage it.

java.sql.ParameterMetaData

Provides the number, type and properties of
parameters to prepared statements.

java.sql.PreparedStatement

Manages dynamic SQL statements.

java.sql. ResultSet

Encapsulates a set of rows.

java.sql.ResultSetMetaData

Provides metadata information about the
ResultSet.

java.sql.Statement

Manages static SQL statements.

javax.sql.ConnectionPoolData
Source

Supports caching and reusing of physical
connections, which improves application
performance and scalability.

javax.sql.DataSource

Provides access to JDBC drivers and manages
data sources.

javax.sql.PooledConnection

Represents physical connection to a DataSource.

javax.sql.RowSet

Encapsulates a set of rows that have been
retrieved from a tabular DataSource.

Daffodil DB

Daffodil DB JDBC Reference Guide

J2EE Certified

javax.sql.RowSetMetaData Manages row set of metadata information.

javax.sql.XAConnection An XA Connection object is a Pooled Connection
object that can participate in a distributed
transaction.

javax.sql.XADataSource Provides connections that can participate in a
distributed transaction.

Compatibility

Platforms

Daffodil DB JDBC driver had been tested and certified on all platforms including
Windows and Linux that support JDK 1.3 or higher.

JDBC Version
The Daffodil DB JDBC driver is compatible with JDBC version 3.0

JDK Version
The Daffodil DB JDBC driver requires JDK version 1.3 or higher.

Daffodil DB 10

Daffodil DB JDBC Reference Guide

J2EE Certified

Fundamentals of Daffodil DB JDBC Driver

This section describes the most fundamental JDBC features supported by Daffodil DB
JDBC driver. It explains how to connect to Daffodil DB Embedded edition or Daffodil DB
Networked edition.

How to access Daffodil DB through JDBC?

To access Daffodil DB database, the application must perform the following tasks:

. Import JDBC classes.
o Register/Load Daffodil DB JDBC driver.
° Establish connection to the database through the driver.

Import JDBC classes

To import JDBC classes into the application, you have to insert the following import
statements at the beginning of your program:

import java.sql.*; llimport the JDBC classes

Register/Load JDBC Driver

Use the following method calls to register Daffodil DB JDBC driver with the JDBC Driver
Manager:

For Daffodil DB Embedded Edition
Class.forName ("in.co.daffodil.db.jdbc.DaffodilDBDriver");

For Daffodil DB Server Edition
Class.forName ("in.co.daffodil.db.rmi.RmiDaffodilDBDriver");

After loading the Daffodil DB JDBC driver, Daffodil DB is available for taking connection.

Note: - The Daffodil DB driver classes must be included in the application’s
classpath.

For Embedded mode you need to include DaffodilDB_Embedded.jar and
DaffodilDB_Common.jar

For Network mode you need to include DaffodilDB_Client.jar in your
application’s classpath.

Daffodil DB 11

Daffodil DB JDBC Reference Guide

J2EE Certified

Establishing a connection

Connect to the database using JDBC Driver Manager’s getConnection () method. The
following method calls creates a database named “School” if it does not exist and
connects to it:

Examples

/I For Daffodil DB Embedded Edition

1. Connection con = DriverManager.getConnection
("jdbc:daffodilDB_embedded:School;create=true”,””,””);

OR
2. String driver = "in.co.daffodil.db.jdbc.DaffodilDBDriver";
String url= "jdbc:daffodilDB_embedded:School;create=true";
Class.forName(driver);
Connection con = DriverManager.getConnection(url,
"daffodil", "daffodil");

Il For Daffodil DB Server Edition

Connection con = DriverManager.getConnection
("jdbc:daffodilDB://<hosthame>:<port>/School;create=true",””,””);

If one of the loaded drivers recognizes the JDBC URL supplied to the method
DriverManager.getConnection (), that driver will establish a connection to the Daffodil DB
Server specified in the JDBC URL.

The connection returned by the method DriverManager.getConnection () is an open
connection that can be used to create JDBC statements, which passes SQL statements
given by a user to the Daffodil DB server.

Daffodil DB 12

Daffodil DB JDBC Reference Guide

J2EE Certified

Establishing a Connection with Read-Only Mode

For establishing a connection with read-only mode, you have to specify readonly=true in
the connection URL. Connect to the database using JDBC Driver Manager's
getConnection () method. This method throws an exception if database does not exist on
the specified path. So database must exist to get connection in read-only mode.

Example: (for Embedded mode)
String driver = "in.co.daffodil.db.jdbc.DaffodilDBDriver";

String url = "jdbc:daffodilDB_embedded:School;path =
c:/DaffodilDB3_4/databases;readonly=true";

Class.forName(driver); // Register the driver

Connection con = DriverManager.getConnection(url, "daffodil", "daffodil");

Il Connect to database

If one of the loaded drivers recognize the JDBC URL supplied to the method
DriverManager.getConnection (), that driver will establish a connection to the Daffodil DB
Server specified in the JDBC URL.

The connection returned by the method DriverManager.getConnection() is an open
connection that can be used to create JDBC statements, which passes SQL statements
given by a user to the Daffodil DB server.

In read-only mode user can not perform any operation related to Data Definition
Language and Data Manipulation Language such as Create table
Table_Name(Column_Name Data_Type) OR insert into Table Name values(1). A user
can perform only Data Query and Control Language operations such as Select * from
Table_Name.

Daffodil DB 13

Daffodil DB JDBC Reference Guide

J2EE Certified

Minimal Program

The following sample class connects to an embedded Daffodil DB database “School’:
llimport jdbc classes
import java.sql.*;
public class sample {
public static void main (String[] args) {
try {
/IRegister the driver
Class.forName ("in.co.daffodil.db.jdbc.DaffodilDBDriver");
System.out.printin ("Daffodil DB started!");
/IConnect to the database

Connection con = DriverManager.getConnection
("jdbc:daffodilDB_embedded:School;create=true”,””,””);

} catch (Throwable e) {

System.out.printin ("exception thrown:"+e);

}

Daffodil DB 14

Daffodil DB JDBC Reference Guide

J2EE Certified

Different ways for loading Daffodil DB JDBC Driver

JDBC driver class for Daffodil DB embedded: in.co.daffodil.db.jdbc.DaffodilDBDriver
JDBC driver class for Daffodil DB server: in.co.daffodil.db.rmi.RmiDaffodilDBDriver
Daffodil DB JDBC driver (embedded or server) can be loaded through one of the
following ways.

Note: - The examples mentioned here are for the embedded edition.

1 Class.forName("in.co.daffodil.db.jdbc.DaffodilDBDriver");

This is the one recommended by JavaSoft. However, some JVMs may not load
the class when it is accessed. They can delay it until instances of the class are created.

(1 Class.forName("in.co.daffodil.db.jdbc.DaffodilDBDriver").newinstance()
1 new in.co.daffodil.db.jdbc.DaffodilDBDriver()

Same as Class.forName("in.co.daffodil.db.jdbc.DaffodilDBDriver").newlnstance(),
except that it requires the class to be specified when the code is compiled.

71 Class c = in.co.daffodil.db.jdbc.DaffodilDBDriver.class

Same as Class.forName("in.co.daffodil.db.jdbc.DaffodilDBDriver").newlnstance(),
except that it requires the class to be specified when the code is compiled.

Daffodil DB 15

Daffodil DB JDBC Reference Guide

J2EE Certified

Different ways to connect to Daffodil DB

Daffodil DB server and Daffodil DB database can be accessed by specifying the
connection attributes in the Daffodil DB database connection URL. The general rule for
specifying the connection attributes are:

[0 For Embedded edition: "jdbc:daffodilDB_embedded:<database
name>;property1=value1;property2=value2;propertyn=valuen",”<user
name>","<password>"

71 For Server edition: jdbc:daffodilDB://<hosthame>:<port>/<database name>;

property1=value1;property2=value2;propertyn=valuen",”<user

name>","<password>"

Here property1, property2 .. propertyn should be one of the properties supported by
Daffodil DB. If such a property, which is not supported by Daffodil DB is passed, then it
is ignored by Daffodil DB.

User name and password can also be passed as name-value pairs (properties) in the
connection URL.

For example:
Il For Daffodil DB Embedded Edition

Connection con = DriverManager.getConnection
("jdbc:daffodilDB_embedded:School;create=true”,”user1”,”password1”);

/| For Daffodil DB Server Edition

Connection con = DriverManager.getConnection
("jdbc:daffodilDB://oneOfTheMachines:3456/School;create=true”,”user1”,”
password1”);

The database name passed in the connection URL is searched in the following folders in
the order given below (for both embedded and server editions):

[daffodilDB_home (system property)

(1 daffodilDB_home (environment variable)

1 <user.home>/DaffodilDB (system property)

Daffodil DB does not support passing of an absolute or relative path of the database in
the connection URL. It is mandatory for the database to be present in the
DAFFODILDB_HOME folder.

For more information on DAFFODILDB_HOME, please refer to “Getting Started with
Daffodil DB Guide”.

Daffodil DB 16

http://www.daffodildb.com/PDF/Getting Started with Daffodil DB.pdf
http://www.daffodildb.com/PDF/Getting Started with Daffodil DB.pdf

Daffodil DB JDBC Reference Guide

J2EE Certified

Working with multiple connections in Daffodil DB

A Connection object represents connection with a database. Within the scope of one
connection, you can access only a single Daffodil DB database. A single application can
have one or more connections to Daffodil DB, either to a single database or to many
different databases, which can span to different Daffodil DB Instances.

The following example (for Embedded) describes a scenario in which an application
establishes three separate connections to two different databases in the current system.

Connection conn = DriverManager.getConnection
("jdbc:daffodilDB_embedded:Sapling”);

System.out.println ("Connected to database Sapling ");
conn.setAutoCommit (false);

Connection conn2 = DriverManager.getConnection
("jdbc:daffodilDB_embedded:newDB;create=true");

System.out.printin ("Created AND connected to newDB");
conn2.setAutoCommit (false);

Connection conn3 = DriverManager.getConnection
("jdbc:daffodilDB_embedded:newDB");

System.out.println ("Got second connection to newDB");
conn3.setAutoCommit (false);

Daffodil DB 17

Daffodil DB JDBC Reference Guide

J2EE Certified

Database Connection URL Attributes

An application in an embedded environment uses a different database connection URL
format from the one used by applications in a client/server environment. Pairs of
attributes and values should be specified as part of Daffodil DB database connection
URL. The examples in this section use the database connection URL for use in an
embedded environment. Same attributes and values can also be specified in case
Daffodil DB is used as a database server edition.

Daffodil DB recognizes the following as valid attributes:

[l create: The value for this attribute is Boolean (either true or false) which
specifies whether Daffodil DB should create a new database with the name
passed, in case database already does not exist. Default value for this parameter
is false. For creating a new database, you have to specify create = true.

[1 user: The value for this attribute specifies the name of the user connecting to the
database. There is no default value for this parameter.

[0 password: The value for this attribute specifies password of a user connecting to
the database. There is no default value for this parameter.

(1 ENCRYPTIONSUPPORT: The value for this attribute is Boolean (either true or
false) which specifies whether to store data in an encrypted form or not. Default
value for this parameter is false. If set to frue, the data will be stored in an
encrypted form.

[0 ENCRYPTIONALGO: The value for this attribute is the name of an encryption
algorithm according to which user wants to encrypt the database.

ENCRYPTIONKEY: User may set encryption key of his choice.

MULTIFILESUPPORT: The value for this attribute is Boolean (either true or
false). If set to true, multiple data file support will be enabled. Default value is
false.

O INITIALFILESIZE: This value for this attribute specifies the initial size of
database in MB, if in case a new database is created. Default value for this
parameter is 5m.

1 INCREMENTFACTOR: This is an integer which specifies the factor by which the
database size had to increase after the space allocated to the database had
been taken up or creates subsequent file if MULTIFILESUPPORT is set to true .
This is expressed in terms of percentage of the current size of the database.
Default value for this parameter is 20%. Valid values for this parameter are from
1 to 100.

[J verbose: The string passed in this parameter will display at the server side
traces, when server runs under verbose mode. It is helpful for the debugging
purpose. It is extremely helpful in the scenario where database is accessed by
multiple connections or multiple users.

(1 readonly: This attribute is a Boolean parameter which specifies the mode in
which connection is to be made with Daffodil DB. When it is set to true, the
connection will be in read-only mode. In read-only mode, a database must exist.

Daffodil DB 18

Daffodil DB JDBC Reference Guide

J2EE Certified

Default value for this parameter is false.

If any other attribute is passed with the connection URL, it is simply ignored (all
parameters being case sensitive)

Example code snippet
Il For Daffodil DB Embedded Edition only

Connection con = DriverManager.getConnection
("jdbc:daffodilDB_embedded:School;readonly=false;create=true;
INITIALFILESIZE =20;INCREMENTFACTOR=50","user1","password1");

You can also set the attributes listed above by passing a Properties object along with a
database connection URL to DriverManager.getConnection () when obtaining a
connection.

Specifying Attributes in Properties Object

Instead of specifying attributes on the database connection URL, you can specify
attributes as properties in the Properties object that can be passed as a second
argument to the DriverManager.getConnection () method.

For example, to set the “create” attribute to “true” (in case of embedded environment),
the following steps needs to be performed:

Class.forName ("in.co.daffodil.db.jdbc.DaffodilDBDriver").newlnstance ();
Properties p = new Properties ();
p-put ("create", "true");

Connection conn = DriverManager.getConnection
("jdbc:daffodilDB_embedded:databaseName", p);

Daffodil DB 19

Daffodil DB JDBC Reference Guide

J2EE Certified

Creating and Dropping a Database

A new database can be created by supplying database name with the database
connection URL and specifying create=true. Daffodil DB creates new database inside a
new subdirectory under DAFFODILDB_HOME with the same name as that of the new
database.

For example:
Il For Daffodil DB Embedded Edition

Connection con = DriverManager.getConnection
("jdbc:daffodilDB_embedded:School;create=true”,”user1”,”password1”);

/| For Daffodil DB Server Edition

Connection con = DriverManager.getConnection
("jdbc:daffodilDB://oneOfTheMachines:3456/School;create=true”,”user1”,”
password1”);

The above written sample code will create a new database with the name “School”, if it
does not exist already, and provides a connection to the new database. If database
with the name “School” already exists then it will simply provide a connection to the
existing database.

Database can be dropped using drop database statement.
(Note: - The database can’t be dropped if more than one connection is open.)

For more information on drop database statement, please refer “Daffodil DB SQL
Reference Guide”.

Daffodil DB 20

http://www.daffodildb.com/PDF/Daffodil DB SQL Reference Guide.pdf
http://www.daffodildb.com/PDF/Daffodil DB SQL Reference Guide.pdf

Daffodil DB JDBC Reference Guide

J2EE Certified

Database-level Encryption*

User may encrypt the database to avoid any kind of malicious access to data stored on
the disk. If user needs to encrypt most or all of the data in a database, then it is required
to encrypt data at the database level. Daffodil DB allows its user to use the encryption
system of one’s choice. The interface is designed universally to allow usage of industry
standard encryption algorithms like DES, AES, BLOWFISH, DES3, TEA, IDEA, and
TWOFISH. User is required to specify the encryption key, which is a block of bytes that
the encryption algorithm will use as a secret key. The key length is algorithm-specific;
popular algorithms use keys of 64,128, or 256 bits in length. User needs to set
ENCRYPTIONSUPPORT property to frue at the time of creation of database and may
choose the desired algorithm for encrypting the database.

Example:

String url = "jdbc:daffodilDB_embedded:STUDENTDB;create=true";
String driver = "in.co.daffodil.db.jdbc.DaffodilDBDriver";

Properties prop = new Properties();
prop.setProperty("user”,"daisy");
prop.setProperty("password”,"daisy");
prop.setProperty(“create","true");
prop.setProperty("ENCRYPTIONSUPPORT","true");
prop.setProperty("ENCRYPTIONALGO","tea");
prop.setProperty("ENCRYPTIONKEY","daisy");
Class.forName(driver);

java.sql.Connection con = DriverManager.getConnection(url,prop);

In the above mentioned example a database named STUDENTDB is created which will

be stored in an encrypted form using TEA encryption algorithm and encryption key is
daisy.

* Features that are not supported in One$DB

Daffodil DB 21

Daffodil DB JDBC Reference Guide

J2EE Certified

Multiple Data File Support

To provide support for multiple data file, you need to set the following properties:
props.put("user”, "userName");
props.put("password", "password");
props.put(“create”, "true");
props.put("MULTIFILESUPPORT", "true");
props.put("INITIALFILESIZE", "500m");
props.put("INCREMENTFACTOR", "100");

Daffodil DB 22

Daffodil DB JDBC Reference Guide

J2EE Certified

Standard JDBC Features

This section summarizes how Daffodil DB JDBC driver utilizes the standard features of
JDBC.

Datatypes

Daffodil DB JDBC driver supports the SQL data types required by JDBC 3.0. The
following table shows the mapping between JDBC 3.0 data types and Daffodil DB data

types.

JDBC Data Type Daffodil DB Data Type
CHAR CHAR / CHARACTER
VARCHAR VARCHAR / CHARVARYING /

CHARACTERVARYING
LONGVARCHAR LONGVARCHAR
NUMERIC NUMERIC
DECIMAL DEC / DECIMAL
BIT BIT
BOOLEAN BOOLEAN
TINYINT TINYINT
SMALLINT SMALLINT
INTEGER INT / INTEGER
BIGINT BIGINT LONG
REAL REAL
FLOAT FLOAT
DOUBLE DOUBLE PRECISION
BINARY BINARY
VARBINARY VARBINARY
LONGVARBINARY LONGVARBINARY

Daffodil DB

Daffodil DB JDBC Reference Guide

J2EE Certified
DATE DATE
TIME TIME
TIMESTAMP TIMESTAMP
CLOB CLOB / CHARLARGEOBJECT /
CHARACTERLARGEOBJECT
BLOB BLOB
DATALINK VARCHAR
JAVA_OBJECT BLOB

Prepared Statements

Daffodil DB JDBC driver provides support for prepared statements which can improve
the performance of the applications relative to static JDBC statements. Unlike a static
JDBC statement, dynamic or prepared statements are only compiled once, regardless of
the number of times they are used. A dynamic JDBC statement is used when you need
multiple executions of a particular SQL statement that has varying values associated
with it.

Because Prepared Statement objects are precompiled, their execution can be faster
than those of Statement objects. Hence, if an SQL statement is required to execute
many times, it would be better to use prepared statements.

The following code fragment, where con is a Connection object, creates a Prepared
Statement object containing an SQL update statement with one parameter:

PreparedStatement pstmt1 = con.prepareStatement(
"UPDATE Teacher SET salary = salary + 1000 WHERE Employeeld = ?");

The object pstmt1 now contains the statement "UPDATE Teacher SET salary = salary +
1000 WHERE Employeeld = ?".

Before a Prepared Statement object is executed, the value of each '?' parameter must
be set. This is done by calling a setXXX () method, where XXX is an appropriate type for
the parameter.

For example, if the parameter is of the type, String in the Java Programming Language,
the method to use is setString (). The first argument to the setXXX () method is the
ordinal position of the parameter to be set, with numbering starting at 1. The second
argument is the value to which the parameter is to be set.

For example:
pstmt1.setString(1, "Emp001");

There are three methods execute (), executeQuery (), and executeUpdate () to execute
the statement depending upon the type of statement, which is set into the Prepared
Statement object.

Daffodil DB 24

Daffodil DB JDBC Reference Guide

J2EE Certified

Callable Statements

Daffodil DB JDBC Driver implements Callable Statement interface (which extends
Prepared Statement) with methods for executing and retrieving results from stored
procedures.

Daffodil JDBC Driver supports IN, OUT and INOUT parameters for callable statements.
A callable statement may take n number of input parameters and return n number of
output parameters. As with Statement and Prepared Statement objects, Callable
Statement objects are created by Connection objects.

For example:

The following Database stored procedure “Student_Marks_InOut_Proc” retrieves marks
of a student for the Studentld passed

CREATE PROCEDURE Student_Marks_InOut_Proc
(INOUT INOUT_PARAM INTEGER)

SPECIFIC Student_Marks_InOut_Proc as

BEGIN
SELECT Marks into INOUT_PARAM from MarksRecord
WHERE Studentld=INOUT_PARAM;

END;

The SQL statement for calling a stored procedure would be:
CALL Student_Marks_InOut_Proc (5)

The following code calls the above stored procedure using a callable statement:

Il Create SQL to invoke a stored procedure
String SQL_USE_PROC = "{ call Student_Marks_InOut_Proc(?) }";

Il Create a callable statement with one binding parameters
m_callStmt = m_conn.prepareCall(SQL_USE_PROC);
m_callStmt.setint(1, 24);

m_callStmt.executeQuery();

/I Close the callable statement

m_callStmt.close();

Daffodil DB 25

Daffodil DB JDBC Reference Guide

J2EE Certified

Batch Operations

Daffodil DB JDBC driver supports JDBC SQL batches. You can either use batch multiple
SQL statements using a java.sqgl.Statement object, or batch multiple calls of a single
SQL statement using a java.sql.PreparedStatement object.

Auto-commit should be disabled while using batch updates.

The following code, in which con is an active connection, illustrates a batch operation
with auto-commit turned off:

con.setAutoCommit (false);

PreparedStatement updateTeacherSalary = con.prepareStatement (
"UPDATE TEACHER SET salary = salary + 1000 WHERE EMPLOYEEID =?");
updateTeacherSalary.setint (1, 5);

updateTeacherSalary.addBatch ();

updateTeacherSalary.setint (1, 6);

updateTeacherSalary.addBatch ();

int [] updateCounts = ps.executeBatch ();

con.commit ();

con.setAutoCommit (true);

If auto-commit is not set to false before executing the batch operation, all the operations
in the batch would be operated in auto-commit mode i.e. commit will be performed after
every statement.

Daffodil DB 26

Daffodil DB JDBC Reference Guide

J2EE Certified

ResultSet

Daffodil DB JDBC driver provides all the types of ResultSet according to JDBC 3.0
specification and are listed below:

0 TYPE_FORWARD_ONLY

1 TYPE_SCROLL_INSENSITIVE

1 TYPE_SCROLL_SENSITIVE

The default ResultSet type is TYPE_FORWARD_ONLY.
Daffodil DB supports both the concurrency levels specified by JDBC specification:

I CONCUR_READ_ONLY
| CONCUR_UPDATABLE

Daffodil DB 27

Daffodil DB JDBC Reference Guide

J2EE Certified

DatabaseMetaData

The DatabaseMetaData interface is implemented by Daffodil DB JDBC driver to provide
information about Daffodil DB database engine to applications using Daffodil DB. It is
used primarily by application servers and tools. The Daffodil DB JDBC driver supports all
the standard JDBC DatabaseMetaData methods.

Example:

DaffodilDBDatabaseMetaData DBM = (DaffodilDBDatabaseMetaData)
con.getMetaData();

Transaction Isolation Level

Daffodil DB provides five transaction isolation levels. A connection determines its own
isolation level. So JDBC provides an application with a way to specify a level of
transaction isolation. JDBC defines the following isolation levels:

1 TRANSACTION_READ_UNCOMMITTED
1 TRANSACTION_READ_COMMITTED

"1 TRANSACTION_REPEATABLE_READ

1 TRANSACTION_SERIALIZABLE

In Daffodil DB, the following java.sql.Connection isolation levels are available:
7 TRANSACTION_SERIALIZABLE

TRANSACTION_REPEATABLE_READ

TRANSACTION_READ_COMMITTED

TRANSACTION_READ_UNCOMMITTED

SESSION_ SERIALIZABLE

O o o o

For more information on isolation levels, please refer “Daffodil DB System Guide”.

Daffodil DB 28

http://www.daffodildb.com/PDF/Daffodil DB System Guide.pdf

Daffodil DB JDBC Reference Guide

J2EE Certified

Advanced JDBC Features

This section summarizes how Daffodil DB JDBC driver utilizes some of the advanced
features of JDBC 3.0.

Savepoint

Daffodil DB JDBC Driver provides support for Savepoint which allow programmers to
create subunits of transactions that can be managed independently. This introduces
transaction flexibility and allows programmers to create iffthen/else situations, which
removes the "all or nothingness" of transactions. Once savepoint has been set,
transaction can be rolled back to that savepoint without affecting the work done prior to
the savepoint.

Example:

Int rowcount = stmt.executeUpdate ("update tx_ledger set counter =
counter + 1");

Savepoint sv1 = conn.setSavepoint ("svpoint1");
rowcount = stmt.executeUpdate ("delete from student”);
conn.rollback (sv1);

conn.commit ();

Daffodil DB 29

Daffodil DB JDBC Reference Guide

J2EE Certified

RowSet*

JDBC RowSet provides a disconnected, serializable, scrollable container for tabular
data. A RowSet object can be thought of as a disconnected set of rows those are
cached outside the DataSource. An important intended use of the RowSet is as a
container for tabular data that can be exchanged amid different components of a
distributed application, such as Enterprise JavaBeans components. Data contained in a
RowSet may be updated and then resynchronized with the underlying tabular
DataSource.

A javax.sgl.RowSet object encapsulates a set of rows retrieved from a tabular
DataSource. Because the RowSet interface includes an event notification mechanism
and supports get and set properties, every RowSet object is a JavaBeans component.
This means, for example, that a RowSet can be used as a JavaBeans component in
visual JavaBeans development environment. As a result, a RowSet instance can be
created and configured at design time, and its methods can be executed during run time.

Daffodil DB JDBC Driver supports both connected and disconnected types of RowSet.

To use RowSet object in a program, user needs to import in.co.daffodil.db.rowset
package.

Example:

Following properties need to be set and the command that is set using setCommand
property will be executed through execute property of RowSet.

rowset.setUsername("daffodil");
rowset.setPassword("daffodil”);
rowset.setUrl("jdbc:daffodilDB_embedded:school");
rowset.setCommand("select * from Post");

rowset.execute();

* Features that are not supported in One$DB

Daffodil DB 30

Daffodil DB JDBC Reference Guide

J2EE Certified

Connection Pooling

In the basic DataSource implementation, there is a one-to-one correspondence between
the client's Connection object and the physical database connection. When the
Connection object is closed, the physical connection is dropped as well.

The overhead of opening, initializing, and closing of the physical connection is incurred
for each client session. Connection pool resolves this problem by maintaining a cache of
physical database connections those can be reused across client sessions. Connection
pooling greatly improves performance and scalability, particularly in a three-tier
environment where multiple clients can share a smaller number of physical database
connections. The application server provides its clients with an implementation of the
DataSource interface that makes connection pooling transparent to the client. As a
result, the client gets better performance and scalability while using the same JNDI and
DataSource APIs as before.

Daffodil DB implements the following JDBC extensions to provide connection pooling
support:
71 javax.sqgl.ConnectionPoolDataSource

1 javax.sqgl.PooledConnection

ConnectionPooling Implementation Class
in.co.daffodil.db.jdbc. DBPooledConnection

This is a class which provides implementation of ConnectionPooling

Example:

DBPooledConnection connPool =
(DBPooledConnection)ds.getPooledConnection()

Daffodil DB 31

Daffodil DB JDBC Reference Guide

J2EE Certified

Updatable ResultSet

Daffodil DB JDBC Driver (with necessary support from Daffodil DB) supports updatable
ResultSet for simple select queries and for all isolation levels. It also supports updatable
ResultSet for simple queries having all types of Predicates and Aliases.

Example:

Statement1 = con.createStatement(ResultSet. TYPE_SCROLL_INSENSITIVE,
ResultSet. CONCUR_UPDATABLE);

Partial fetching in ResultSet

Daffodil DB JDBC Driver supports partial fetching in ResultSet. By knowing the number
of rows of data to retrieve or fetch from a database, Statement.setFetchSize (for each
ResultSet produced by the statement) or ResultSet.setFetchSize can be used to
configure this parameter to minimize network traffic and improve database performance.

Daffodil DB 32

Daffodil DB JDBC Reference Guide

J2EE Certified

Retrieving Parameter Metadata

This capability allows programmers to dynamically describe the data types associated
with parameters in SQL Statements. The ability to do this makes parameter handling
even more consistent and efficient.

Example:

PreparedStatement ps = conn.prepareStatement ("{call
MODIFY_TEACHER_SALARY (?,?)}");

ParameterMetaData pmd = ps.getParameterMetaData ();
int colType = pmd.getParameterType (1);

where colType is a constant that is used to identify the JDBC Data Types. Entries of all
such JDBC data types are stored in java.sql.Types.

Daffodil DB 33

Daffodil DB JDBC Reference Guide

J2EE Certified

Daffodil DB XA Support*

Daffodil DB is a J2EE-conformant component in a distributed J2EE system. As such,
Daffodil DB is just a part of a larger system that includes, among other things, a JNDI
server, a connection pool module, a transaction manager, a resource manager, and user
applications. Within this system, Daffodil DB can serve as the resource manager. The
term resource manager is often used while discussing distributed transactions. Resource
manager is an entity that manages data or some other resource.

Daffodil DB distributed transaction support allows more than one database or connection
to participate in the same transaction. Distributed transactions use XA DataSource
entries rather than DataSource or ConnectionPooled DataSource entries. Such entries
can participate in distributed transactions using the methods provided in the XA
DataSource implementation.

In order to qualify as a resource manager in a J2EE system, J2EE requires the following
basic areas of support:

0 JNDI support
"1 Connection Pooling
[0 XA Support

You can use Daffodil DB in a Distributed Transaction Processing (DTP) environment to
write Enterprise JavaBeans that are transactional across multiple Daffodil DB Servers.
Workgroup environments, such as J2EE and J2SE where the data extends across
multiple databases can benefit using Daffodil DB, because Daffodil DB JDBC driver
supports the 2-phase commit protocol used by the Java Transactional APl (JTA).

According to the X/Open’s Distributed Transaction Processing (DTP) Model, a DTP
environment specifies those application programs, which can use the Resource
Manager and a Transaction Manager to access multiple data sources through one global
transaction. In the JDBC, distributed transaction functionality is built on top of connection
pooling functionality.

A distributed transaction system typically relies on an external transaction manager such
as an application server that implements standard Java Transaction API functionality to
coordinate the individual transactions. XA functionality is usually hidden from a client
application, being implemented in a middle-tier environment such as an application
server.

_* Features that are not supported in One$DB.

Daffodil DB 34

Daffodil DB JDBC Reference Guide

J2EE Certified

Distributed Transaction Concepts

Applications participating in global transactions that use connections cannot use normal
connection instances like COMMIT, AutoCommit, or ROLLBACK functionality, because
all COMMIT or ROLLBACK operations in a global transaction must be coordinated
among all resource managers. Any attempt to use the commit () or rollback () method or
enabling the auto-commit of a connection instance would result in SQL exception. When
you use XA functionality, the transaction manager uses XA resource instances to
prepare and coordinate each transaction branch and then to commit or rollback all
transaction branches appropriately.

XA functionality includes the following key components:

XA DataSource

These are extensions of connection pool DataSource and other DataSource, and are
similar in concept as well as functionality. There will be one XA DataSource instance for
each resource manager (database) that will be used in the distributed transaction. User
needs to create XA DataSource instances in their middle-tier software. XA DataSource
produces XA connections.

XA Connections

These are extensions of pooled connections. An XA connection encapsulates a physical
database connection and individual connection instances are temporary handles to
these physical connections. An XA connection instance from an XA DataSource
instance can be obtained (using a get method) in your middle-tier software. Multiple XA
connection instances from a single XA DataSource instance can be obtained if the
distributed transaction involves multiple physical connections in the same database.

XA Resources

A transaction manager coordinating the transaction branches of a distributed transaction
uses the XA resources. You will get one XA resource instance from each XA connection
instance (using a get method), typically in your middle-tier software. There is a one-to-
one correlation between XA connection instances and XA resource instances. Each XA
resource instance has the functionality to start, end, prepare, commit, or roll back the
operations of the transaction branch running in the session with which the XA resource
instance is associated. The transaction manager uses XA resource instances to
coordinate all the transaction branches that constitute a distributed transaction. Each XA
resource instance provides the following functionality, invoked by the transaction
manager:

[J It associates and disassociates distributed transactions with the transaction
branch operating in the XA connection instance that produces this XA resource
instance. This is done by using transaction IDs.

(1 It performs two-phase commit functionality of a distributed transaction to ensure
that changes are not committed in one transaction branch before there is an
assurance that the changes will succeed in all transaction branches.

Distributed Transaction IDs

These are used to identify transaction branches. Each ID includes a transaction branch
ID component and a distributed transaction ID component. This is how a branch is

Daffodil DB 35

Daffodil DB JDBC Reference Guide

J2EE Certified

associated with a distributed transaction.

All XA resource instances associated with a given distributed transaction will have a
transaction ID that includes the same distributed transaction ID component.

Each transaction branch is assigned a unique transaction ID, which includes the
following information:

(1 format identifier (4 bytes)
71 global transaction identifier (64 bytes)
[branch qualifier (64 bytes)

A format identifier specifies a Java transaction manager. The 64-byte global transaction
identifier value will be identical in the transaction IDs of all transaction branches
belonging to the same distributed transaction. The overall transaction ID, however, is
unique for every transaction branch. An XA transaction ID instance is an instance of a
class that implements the standard javax.transaction.xa.Xid interface, which is a Java
mapping of the X/Open transaction identifier Xid structure.

Daffodil DB 36

Daffodil DB JDBC Reference Guide

J2EE Certified

Classes related to Resource Managers

DataSource Factory Class
in.co.daffodil.db.rmi.DataSourceFactory
This is a class for Daffodil DB DataSource. System administrators can obtain
DataSource (for remote access) objects from this class.
DataSource Implementation Class
in.co.daffodil.db.jdbc.DBDataSource
This is a class which provides implementation of DataSource in embedded mode.
in.co.daffodil.db.rmi.RmiDaffodilDBDataSource
This class provides the implementation of DataSource in network (rmi) mode.

XADataSource Interface Implementation
in.co.daffodil.db.rmi.RmiDaffodilDBDataSource

This class provides the functionalities of XA DataSource. The javax.sql.XADataSource
interface outlines standard functionality of XA DataSource, which are factories for XA
connections.

Xid Interface Implementation
in.co.daffodil.db.jdbc.DBXID

List of Properties required to set in DataSource\XADataSource

CreateDatabase true/false

DatabaseHome Path where database
is to be created
(required only for
embedded mode)

DatabaseName <name>
User <user>
Password <password>
Daffodil DB 37

Daffodil DB JDBC Reference Guide

J2EE Certified

Controlling JDBC Session properties

A JDBC session is defined as a set of database transactions performed using the same
JDBC Connection object. From the JDBC driver perspective, a client session is
represented by a JDBC Connection object.

A user can set following properties for a session:

Isolation Level

If a connection does not specify its isolation level, it inherits the default isolation level for
Daffodil DB system. The default value for that property is READ_COMMITTED. When
set to READ_COMMITTED, the connection inherits the
TRANSACTION_READ_COMMITTED isolation level. When set to SERIALIZABLE, the
connection inherits the TRANSACTION_SERIALIZABLE isolation level.

To override the inherited default, use java.sql.Connection.setTransactionlsolation ()
method.

Daffodil DB supports following isolation levels for transactions:

TRANSACTION_SERIALIZABLE
TRANSACTION_REPEATABLE_READ
TRANSACTION_READ_COMMITTED
TRANSACTION_READ_UNCOMMITTED
SESSION_ SERIALIZABLE

O o o o o

Transaction Access Mode

User can change the access mode of a transaction to either read or write. In a read
mode user can only read data from the database but cannot perform DML or DDL
operations on the database. In write mode, the user can perform all kinds of operations
on the database, based on rights given to the user.

For example:

Connection.setReadOnly (Boolean val);
If val is set to true, the transaction is set to read-only mode. If set to false, it is set to
read-write mode.

Constraint Mode

If a database constraint had been defined as deferrable (a deferrable constraint can be
immediate or deferred), then mode of the constraint can be converted from immediate to
deferred and vice-versa during the course of the session. Every deferrable constraint
has a default constraint mode. When you change the mode of a deferrable constraint, it
is changed only for that particular session.

If constraint mode is deferred, then the constraint checking takes place when a
transaction commits, or the constraint mode is explicitly changed to immediate by using
the “Set Constraints name immediate” statement.

Daffodil DB 38

Daffodil DB JDBC Reference Guide

J2EE Certified

If constraint mode is immediate, then constraint checking effectively takes place for each
SQL statement executed on the database.

The constraint mode can be changed by using Statement.execute () method.

For example:
statementi1.execute (“set constraints constraint_name deferred”)

Daffodil DB 39

Daffodil DB JDBC Reference Guide

J2EE Certified

Avoiding Deadlocks

In a database, a deadlock is a situation in which two or more transactions are waiting for
one another to give up their locks. For example, Transaction A may hold a lock on some
rows in the Accounts table and needs to update some rows in the Orders table to
finish. Transaction B hold locks on the same rows in the Orders table but needs to
update the rows in the Accounts table held by Transaction A. Transaction A cannot
complete its transaction because of the lock on Orders by Transaction B. Transaction B
cannot complete its transaction because of the lock on Accounts by Transaction A. All
activities come to a halt and remain standstill forever unless one of the transactions give
up the locks it has acquired.

Using TRANSACTION_READ_COMMITTED isolation level (the default isolation level) is
likely to avoid deadlocks. However, deadlocks are still possible.

But Daffodil DB application developers can avoid deadlocks by using consistent
application logic. For example, transactions that access Accounts and Orders should
always access the tables in the same order. So, in the scenario described above,
Transaction B simply waits for transaction A to release the lock on Orders, before it
begins. When transaction A releases the lock on Orders, Transaction B can proceed
freely.

When a transaction waits for more than a specific amount of time to obtain a lock, either
due to a deadlock situation, or due to a long running transaction, holding locks on the
table/record required by the first transaction, it times out or aborts with appropriate
exception code and message.

Limitations: - Deadlocks are detected only within a single Daffodil DB database.
Deadlocks across multiple databases are not detected. Non-database deadlocks caused
by Java synchronization primitives are also not detected by Daffodil DB.

Daffodil DB 40

Daffodil DB

JDBC Reference Guide

J2EE Certified

End Note

Although this manual reflects the most current information possible, you should read the

Daffodil DB Release Notes from time to time for latest information and updates on
Daffodil DB.

Release Notes are available at: http://www.daffodildb.com/daffodil-release-notes.html

Daffodil DB 41

http://www.daffodildb.com/daffodil-release-notes.html

Daffodil DB JDBC Reference Guide

J2EE Certified

Sign Up for Support

If you have started working with Daffodil DB, please remember to sign up for the benefits
you are entitled to as a Daffodil DB customer.

For free support, be a part of our online developer community at Daffodil Developer
Forum

For buying support packages, please visit: http://www.daffodildb.com/support-
overview.html

For more information regarding support, write to us at: support@daffodildb.com

Daffodil DB 42

http://www.daffodildb.com:8080/jive3/index.jspa
http://www.daffodildb.com:8080/jive3/index.jspa
http://www.daffodildb.com/support-overview.html
http://www.daffodildb.com/support-overview.html

Daffodil DB JDBC Reference Guide

J2EE Certified

We Need Feedback!

If you spot a typographical error in the Daffodil DB JDBC Reference Guide, or if you
have thought of a way to make this manual better, we would love to hear from you!

Please submit a report in Bugzilla http://www.daffodildb.com/bugzilla/index.cgi OR write
to us at: feedback@daffodildb.com

Daffodil DB 43

http://www.daffodildb.com/bugzilla/index.cgi

Daffodil DB JDBC Reference Guide

J2EE Certified

License Notice

© 2004, Daffodil Software Limited
All Rights Reserved.

This manual, as well as the software described in it, is furnished under license and may
be used or copied only in accordance with the terms of such license. The content of this
manual is for informational purpose only, and is liable to change without prior notice.
Daffodil Software Limited assumes no responsibility or liability whatsoever for any errors
or inaccuracies that may appear in this documentation. No part of this product or any
other product of Daffodil Software Limited or related documentation may be stored,
transmitted, reproduced or used in any other manner in any form by any means without
prior written authorization from Daffodil Software Limited.

Daffodil DB 44

	Table of Contents
	Preface
	Purpose
	Target Audience

	Related Documentation
	Daffodil DB and JDBC 3.0
	Daffodil DB JDBC Driver
	JDBC 3.0 features supported by Daffodil DB
	Compatibility

	Fundamentals of Daffodil DB JDBC Driver Manager:
	How to access Daffodil DB through JDBC?
	Import JDBC classes
	Register/Load JDBC Driver
	Establishing a connection
	Examples
	Establishing a Connection with Read-Only Mode
	Minimal Program

	Different ways for loading Daffodil DB JDBC Driver
	Different ways to connect to Daffodil DB
	Working with multiple connections in Daffodil DB
	Database Connection URL Attributes
	Creating and Dropping a Database
	Database-level Encryption*
	Multiple Data File Support

	Standard JDBC Features
	Datatypes
	Prepared Statements
	Callable Statements
	Batch Operations
	ResultSet
	DatabaseMetaData
	Transaction Isolation Level

	Advanced JDBC Features
	Savepoint
	RowSet*
	Connection Pooling
	Updatable ResultSet
	Partial fetching in ResultSet
	Retrieving Parameter Metadata
	Daffodil DB XA Support*
	Distributed Transaction Concepts
	Classes related to Resource Managers

	Controlling JDBC Session properties
	Avoiding Deadlocks
	End Note
	Sign Up for Support
	We Need Feedback!
	License Notice

