Daffodil DB SQL Reference Guide

J2EE Certified

Daffodil DB
SQL Reference Guide

Version 4.1

March 2005

Daffodil DB SQL Reference Guide

J2EE Certified

Copyright © Daffodil Software Limited
Sco 42, 3 Floor

Old Judicial Complex, Civil Lines
Gurgaon - 122001

Haryana, India.

www.daffodildb.com

All rights reserved. Daffodil DB™ is a registered trademark of Daffodil Software Limited. Java™ is a
registered trademark of Sun Microsystems, Inc. All other brand and product names are trademarks of their
respective companies.

Daffodil DB 2

Daffodil DB SQL Reference Guide

J2EE Certified

Table of Contents
0 1 7
1.1 Purpose of Document.......... 7
1.2 Audience.........cccceeveeruveennen. 7
2 Conventions 8
3 Related Document 9
4 Keywords 10
3.1 Reserved Words................ 10
3.2 Non-Reserved Keywords...11
5 Identifier 13
5.1 Regular Identifier................. 13
5.2 Delimited Identifier.............. 14
6 Data Types 15
6.1 Predefined Type.................. 15
6.1.1 Character String Type................. 15

6.1.1.1 Character or Char......... 16

6.1.1.2 Character Varying or Char Varying or Varchar or Varchar2......17

6.1.1.3 Character Large Object or Char Large Object or CLOB or Long 17
6.1.2 Binary Large Object String Type....19

6.1.2.1 Binary.............. 19

6.1.2.2 Varbinary......... 20

6.1.2.3 BLOB or Long Varbinary......... 20

6.1.3 Numeric Type.........cc..... 21
6.1.3.1 Exact Numeric Type.................. 21
6.1.3.1.1 NUMERIC or DECIMAL or DEC or NUMBER........... 22
6.1.3.1.2 INTEGER or INT......23
6.1.3.1.3 SMALLINT............... 23

6.1.3.2.1 Float........... 26
6.1.3.2.2 Real............ 27
6.1.3.2.3 Double Precision......... 27
6.1.4 Boolean..................... 28
6.1.5 Date time Type.......... 28
6.1.5.1 Date........... 29
6.1.5.2 Time........... 30
6.1.5.3 Time Stamp............. 31
6.2 Domain Name.........ccocuvveeennnn. 31
7 Literals 32
7.1 Character String Literal.............. 32
7.2 Numeric Literal............coouuu...... 32
7.3 Date Time Literal....................... 33
7.4 Boolean Literal.......................... 35
8 Functions 36
8.1 Numeric Functions..................... 36

8.1.1 Absolute Value Expression

Daffodil DB 3

Daffodil DB SQL Reference Guide

J2EE Certified

8.1.2 Modulus Value Expression
8.1.3 Sine Function
8.1.4 Power Function
8.1.5 Rand Function
8.1.6 SQRT Function
8.1.7 TRUNCATE Function
8.1.8 FLOOR Function
8.1.9 CEILING Function
8.1.10 LOG Function
8.1.11 EXP Function
8.1.12 COS Function
8.1.13 TAN Function
8.1.14 COT Function
8.1.15 ACOS Function
8.1.16 ASIN Function
8.1.17 ATAN Function
8.1.18 DEGREES Function
8.1.19 RADIANS Function
8.1.20 PI Function
8.1.21 ATAN?2 Function
8.1.22 ROUND Function
8.1.23 SIGN Function

8.2 Date Time Functions...................... 52
8.2.1 DAYNAME Function
8.2.2 DAYOFMONTH Function
8.2.3 DAYOFWEEK Function
8.2.4 DAYOFYEAR Function
8.2.5 WEEK Function
8.2.6 MONTH Function
8.2.7 YEAR Function
8.2.8 MONTHNAME Function
8.2.9 HOUR Function
8.2.10 MINUTE Function
8.2.11 SECOND Function
8.2.12 TIMESTAMPADD Function
8.2.13 TIMESTAMPDIFF Function
8.2.14 CURDATE Function
8.2.15 CURTIME Function
8.2.16 CURTIMESTAMP Function
8.2.17 DATE Function
8.2.18 TIME Function

8.3 String Functions..........ccccceevunenne 64
8.3.1 ASCII Value Function
8.3.2 Left Function
8.3.3 Right Function
8.3.4 Space Function
8.3.5 Replace Function
8.3.6 Repeat Function

Daffodil DB 4

Daffodil DB SQL Reference Guide

J2EE Certified

8.3.7 Soundex Function
8.3.8 Insert Function

8.3.9 Difference Function
8.3.10 Concat Function
8.3.11 Locate Function
8.3.12 Lcase Function
8.3.13 Ucase Function
8.3.14 Ltrim Function
8.3.15 Rtrim Function
8.3.16 Char Function
8.3.17 Length Function
8.3.18 Substring Function
8.3.19 EqualsCaseSensitive Function
8.4 System Functions.......c.ccccceeueee. 81
8.4.1 Current Database Function or CURRENT_DATABASE
8.4.2 User Function or CURRENT_USER
8.4.3 IFNULL Function

8.5 Special Functions.........cccccceueennne 82
7.5.1 TOP Function
8.6 Aggregate Functions.................... 83
7.6.1 Count
7.6.2 Avg
7.6.3 Sum
7.6.4 Max/Min
9 Expressions 85
9.1 Numeric Expression.................... 85
9.2 Boolean Expression.................... 87
9.3 String Expression..........c.cceeuveen. 89
9.4 Expression Primary...................... 91

9.4.1 SubQuery

9.4.2 COLUMN REFERENCE

9.43 CONSTANT

944 MULTI-VALUED EXPRESSION
9.4.5 PARENTHESIZED EXPRESSION

10 Predicates 95
10.1 Comparison Predicate.................... 96
10.2 Between Predicate......................... 98
10.3 Like Predicate...........cccoouveeeeeeeennn. 100
10.4 Exists Predicate.............ccceeuvvveeenn.. 101
10.5 In Predicate..........ooeovevueeeeeeieiiinnnn. 102
10.6 Null Predicate...........ccoovvveveveevinenne. 103
10.7 Quantified Comparison Predicate...104
10.8 Contains Predicate*............cccceeenn.... 107

11 Data Definition Language 110
11.1 Create Table Statement................... 112
11.2 Create Trigger Statement................. 121
11.3 Create Procedure Statement............ 124
11.4 Create View Statement.................... 135

Daffodil DB 5

Daffodil DB SQL Reference Guide

J2EE Certified

11.5 Create Index Statement................... 136
11.6 CreateFullTextIndex*...............c.c...... 137
11.7 Create Domain Statement................ 139
11.8 Create Schema Statement 139
11.9 Create User Statement..................... 140
11.10 Alter Table Statement..................... 141
11.11 Drop Table Statement..................... 143
11.12 Drop View Statement..................... 144
11.13 Drop Index Statement..................... 144
11.14 DropFullTextIndex*..............ccccceee. 144
11.15 Drop Schema Statement.................. 144
11.16 Drop Procedure Statement............... 145
11.17 Drop Trigger Statement.................... 146
12 Persistent Stored Modules 147
13 Data Manipulation Language 149
13.1 Insert Statement...........cccceeeeueeeruveennee. 149
13.2 Update Statement.........cccceeveeereernennee. 151
13.3 Delete Statement............ccceeveeruveennee. 152
14 Data Query And Control Language 153
14.1 Select Statement............cccceveeeveeenennns 153

14.1.1 FROM Clause

14.1.2 JOIN Operators

14.1.3 GROUP BY Clause

14.1.4 UNION/INTERSECTOR Operator
14.1.5 ORDER BY Clause

14.1.6 Alias Support

14.1.7 Comments Support

15 Call Statement 171
16 Session And Transaction Control Statements 172
16.1 Set Transaction Statement 172
16.2 Savepoint Statement..........ccccceeceeveenneee 172
16.3 Commit Statement..........ccccevvveeeeeeeennnnes 172
16.4 Rollback Statement...........ccocvvvvereeeennn. 173
16.5 Set Session Authrization......................... 173
16.6 Set Session Characteristics Statement.....174
17 SQL Security And Privileges 175
17.1 Grant Statement..............coeevevvvveererrennnnns 176
17.2 Revoke Statementccceeeevevveveeeeennn. 178
17.3 Create Role
17.4 Grant Role
17.5 Drop Role
18 APPENAIX.euuiiniieiiiereeriarsessecsscrsssssosssssssssssrssssssssssossssssssossonssassasssssssonses 183
18.1 Error Messages
18.2 Country Codes

18.3 Language Codes

* Features that are not supported in One$DB

Daffodil DB 6

rajat.chugh
* Features that are not supported in One$DB

Daffodil DB SQL Reference Guide

J2EE Certified

Preface

Purpose of This Document

SQL Reference Guide is a comprehensive document which covers all the SQL-99 features supported
by Daffodil DB. This ready reference tool describes in detail the syntax and semantics of SQL
language statements and elements for Daffodil DB. It explains how to use SQL with Daffodil DB
and how to perform various database operations on Daffodil DB such as creating tables or indexes,
managing transactions and sessions, Daffodil DB security features etc.

Audience

This guide is intended to act as a ready reference tool for software developers building Daffodil
DB applications. This guide assumes that that you are familiar with the following concepts:

e Basic SQL (Structured Query Language).

e Basic Database Concepts.

e Basic Java Programming Language.

It is also assumed that the reader has gone through “Getting Started with Daffodil DB Guide”.

Daffodil DB 7

Daffodil DB SQL Reference Guide

J2EE Certified

Conventions

This section describes documentation syntax conventions. Syntax conventions convey specific
information on keywords and clauses in the SQL statements described in the document.

Syntax Conventions

Each SQL statement uses certain types of capitalization, formatting, and punctuation that describe
the attributes of different portions of the statement.

UPPERCASE If a portion of an SQL statement occurs in UPPERCASE, then the capitalized
words are keywords, which are usually required in the SQL statement or clause.
Keywords are not case sensitive, and they must be spelled exactly the way they
display in the document.

[1 Clauses in an SQL statement that occur between [brackets] are optional. If an
optional clause has several components or keywords, they occur within brackets.

{} Curly Braces denote a choice among mandatory elements. They enclose a set of
options, separated by vertical bars (|). You must choose at least one of the
options.

Ellipses in an SQL statement have similar meaning as “etc.” It denotes that a
series of keywords, clauses, or variables that precede the ellipses can go on
indefinitely.

I Vertical bars in SQL statement separate a set of options.

0 Parentheses and other punctuation marks are required elements. Enter them as shown
in syntax diagrams.

Daffodil DB 8

Daffodil DB SQL Reference Guide

J2EE Certified

Related Documentation

Daffodil DB Getting | Designed to help new and intermediate Daffodil DB users navigate and
Started Guide perform common tasks like How to start and stop Daffodil DB,
Understanding key variables used by Daffodil DB, User documentation
bundled with Daffodil DB. Also briefly describes Daffodil DB Editions
and Tools

Daffodil DB System | Describes the architecture of Daffodil DB and provides the information
Guide that the server administrator might need to keep Daffodil DB running
with high performance and reliability in a server framework or a multi-
user application server. Also describes the standards on which Daffodil
DB had been built, transaction capabilities and some of the unique
features supported by Daffodil DB.

Daffodil DB JDBC Explains how to use Daffodil DB and JDBC technology to develop
Reference Guide applications. It describes the basic Daffodil DB and JDBC concepts like
JDBC 3.0 features supported by Daffodil DB, how to create and access
Daffodil DB databases through JDBC API, Daffodil DB support for
JDBC and JTA and how to use Daffodil DB in a Distributed Transaction
Processing environment.

Daffodil DB Tools Explains how to use Daffodil DB Browser with Embedded as well as
Guide Server versions of Daffodil DB. Describes how to perform various
database operations on Daffodil DB using Daffodil DB Browser such as
creating a database, creating database objects, manipulating data, creating
triggers etc.

Daffodil DB 9

J2EE Certified

Keywords

Reserved Words

Daffodil DB reserves certain keywords as Reserved Words which cannot be used, as an identifier
for a table, column, or index, or as a correlation name defined in a SELECT statement, unless you
delimit them. A delimited identifier is an identifier specified in double quotes. Any word,
including keywords, can be a delimited identifier.

Daffodil DB Reserved Words

ABSOLUTE DEFERRED LEFT ROLLUP
ACTION DELETE LESS ROUTINE

ADD DEPTH LEVEL ROW

ADMIN DEREF LIKE ROWNUM
AFTER DESC LIMIT ROWS
AGGREGATE DESCRIBE LOCAL SAVEPOINT
ALIAS DESCRIPTOR LOCALTIME SCHEMA

ALL DESTROY LOCALTIMESTAMP SCROLL
ALLOCATE DESTRUCTOR LOCATOR SCOPE

ALTER DETERMINISTIC LONG SEARCH

AND DICTIONARY MIN SECOND

ANY DIAGNOSTICS MAP SECTION

ARE DISCONNECT MAX SELECT
ARRAY DISTINCT MATCH SEQUENCE

AS DOMAIN MINUTE SESSION

ASC DOUBLE MODIFIES SESSION_USER
ASSERTION DROP MODIFY SET

AT DYNAMIC MODULE SETS
AUTHORIZATION EACH MONTH SIZE

AVG ELSE NAMES SMALLINT
BEFORE END NATIONAL SOME

BEGIN EQUALS NATURAL SPACE

BIGINT ESCAPE NCHAR SPECIFIC
BINARY EVERY NCLOB SPECIFICTYPE
BIT EXCEPT NEW SQL

BLOB EXCEPTION NEXT SQLEXCEPTION
BOOLEAN EXEC NO SQLSTATE
BOTH EXECUTE NONE SQLWARNING
BREADTH EXTERNAL NOT START

BY FALSE NULL STATEMENT
BYTE FETCH NUMERIC STATIC

CALL FIRST OBIJECT STRUCTURE
CASCADE FLOAT OF SUM
CASCADED FOR OFF SYSTEM_USER
CASE FOREIGN OLD TABLE

CAST FOUND ON TEMPORARY
CATALOG FROM ONLY TERMINATE
CHAR FREE OPEN THAN
CHARACTER FULL OPERATION THEN

CHECK FUNCTION OR TIME

CLASS GENERAL ORDER TIMESTAMP
CLOB GET ORDINALITY TIMEZONE_HOUR
CLOSE GLOBAL OouT TIMEZONE_MINUTE
COLLATE GO OUTER TINYINT
COLLATION GOTO OUTPUT TO

COLUMN GRANT PAD TRAILING
COMMIT GROUP PARAMETER TRANSACTION
COMPLETION GROUPING PARTIAL TRANSLATION
CONNECT HAVING PATH TREAT
CONNECTION HOST POSTFIX TRIGGER
CONSTRAINT HOUR PRECISION TRUE
CONSTRAINTS IDENTITY PREFIX UNDER
CONSTRUCTOR IGNORE PREORDER UNION
Daffodil DB 10

J2EE Certified

CONTINUE IMMEDIATE PREPARE UNIQUE
CORRESPONDING IN PRESERVE UNKNOWN
COUNT INDICATOR PRIMARY UNNEST
CREATE INITIALIZE PRIOR UPDATE
CROSS INITIALLY PRIVILEGES USAGE
CUBE INNER PROCEDURE USER
CURRENT INOUT PUBLIC USING
CURRENT_DATE INPUT READ VALUE
CURRENT_PATH INSERT READS VALUES
CURRENT_ROLE INT REAL VARBINARY
CURRENT_TIME INTEGER RECURSIVE VARCHAR
CURRENT_TIMESTAMP | INTERSECT REF VARIABLE
CURRENT_USER INTERVAL REFERENCES VARYING
CURSOR INTO REFERENCING VIEW
CYCLE IS RELATIVE WHEN
DATA ISOLATION RELEASE WHENEVER
DATE ITERATE RESTRICT WHERE
DAY JOIN RESULT WITH
DEALLOCATE KEY RETURN WITHOUT
DEC LANGUAGE RETURNS WORK
DECIMAL LARGE REVOKE WRITE
DECLARE LAST RIGHT YEAR
DEFAULT LATERAL ROLE ZONE
DEFERRABLE LEADING ROLLBACK

NOTE: Words listed here are SQL reserved words and should not be used. Some of these
keywords may not be supported in the current version, but are reserved for future versions of
Daffodil DB.

Non-Reserved Words

Daffodil DB reserves certain words as Non Reserved Words. Non-Reserved words can be used as
an identifier for a table, column, or indeXx, or as a correlation name, which is defined in a SELECT
statement.

Daffodil DB Non-Reserved Words

ABS EXISTING REPEAT

ACOS EXISTS REPLACE

ADA EXP RETURNED_LENGTH
ASENSITIVE EXTRACT RETURNED_OCTET_LENGTH
ASCII FINAL RETURNED_SQLSTATE
ASSIGNMENT FLOOR ROUND

ASENSITIVE FORTRAN ROUTINE_CATALOG
ASIN G ROUTINE_NAME
ASYMMETRIC GENERATED ROUTINE_SCHEMA
ATAN GRANTED ROW_COUNT

ATAN2 HIERARCHY RTRIM

ATOMIC HOLD SCALE

ATTRIBUTE IFNULL SCHEMA_NAME

B IMPLEMENTATION SECURITY
BETWEEN INDEX SELF

BIT_LENGTH INFIX SENSITIVE

BITVAR INSENSITIVE SERIALIZABLE

C INSTANCE SERVER_NAME
CALLED INSTANTIABLE SIMPLE
CARDINALITY INVOKER SIGN
CATALOG_NAME K SIN

Daffodil DB

11

J2EE Certified

CEILING

CHAIN

CHAR_LENGTH
CHARACTER_LENGTH
CHARACTER_SET_CATALOG
CHARACTER_SET_NAME
CHARACTERISTICS
CHARACTER_SET_SCHEMA
CHECKED

CLASS_ORIGIN

COALESCE

COBOL
COLLATION_CATALOG
COLLATION_NAME
COLLATION_SCHEMA
COLUMN_NAME
COMMAND_FUNCTION
COMMAND_FUNCTION_CODE
COMMITTED

CONCAT
CONDITION_NUMBER
CONNECTION_NAME
CONSTRAINT_CATALOG
CONSTRAINT_NAME
CONSTRAINT_SCHEMA
CONTAINS

CONVERT

COS

CcoT

CURDATE
CURRENT_DATABASE
CURSOR_NAME

CURTIME

DATABASE
DATETIME_INTERVAL_CODE
DATETIME_INTERVAL_PRECISION
DAYNAME

DAYOFMONTH
DAYOFWEEK

DAYOFYEAR

DEFINED

DEFINER

DEGREES

DERIVED

DIFFERENCE

DISPATCH
DYNAMIC_FUNCTION
DYNAMIC_FUNCTION_CODE

KEY_MEMBER

KEY_TYPE

LCASE

LENGTH

LOCATE

LOG

LOWER

LTRIM

M

MESSAGE_LENGTH
MESSAGE_OCTET_LENGTH
MESSAGE_TEXT

METHOD

MOD

MONTHNAME

MORE

MOUNT

MUMPS

NAME

NOW

NULLABLE

NUMBER

NULLIF

OCTET_LENGTH

OPTIONS

ORDERING

OVERLAPS

OVERLAY

OVERRIDING

PASCAL
PARAMETER_MODE
OPTION

PARAMETERS
PARAMETER_NAME
PARAMETER_ORDINAL_POSITION
PARAMETER_SPECIFIC_CATALOG
PARAMETER_SPECIFIC_NAME
PARAMETER_SPECIFIC_SCHEMA
PASSWORD

PI

PLI

PLACING

POSITION

POWER

RADIANS

RAND

REPEATABLE

SOUNDEX
SOURCE
SPECIFIC_NAME
SIMILAR
SQL_TSI_DAY
SQL_TSI_FRAC_SECOND
SQL_TSI_HOUR
SQL_TSI_MINUTE
SQL_TSI_MONTH
SQL_TSI_QUARTER
SQL_TSI_SECOND
SQL_TSI_WEEK
SQL_TSI_YEAR
SQRT
SUBLIST
SUBSTRING
STATE
STYLE
SUBCLASS_ORIGIN
SYMMETRIC
SYSTEM
TABLE_NAME
TAN
TIMESTAMPADD
TIMESTAMPDIFF
TOP
TRANSACTIONS_COMMITTED
TRANSACTIONS_ROLLED_BACK
TRANSACTION_ACTIVE
TRANSFORM
TRANSFORMS
TRANSLATE
TRIGGER_CATALOG
TRIGGER_SCHEMA
TRIGGER_NAME
TRIM
TRUNCATE
TYPE
UCASE
UNCOMMITTED
UNNAMED
UPPER
USER_DEFINED_TYPE_CATALOG
USER_DEFINED_TYPE_NAME
USER_DEFINED_TYPE_SCHEMA
WEEK

X

NOTE: Words listed here are SQL Non-Reserved words and can be used freely. Some of these
Non-Reserved Words may not be supported in the current version, but are reserved for future

versions of Daffodil DB.

Daffodil DB

12

Daffodil DB SQL Reference Guide

J2EE Certified

Identifier

An SQL identifier can be a Regular Identifier or it can be a Delimited Identifier. Delimited
Identifiers are enclosed in double quotes.

Syntax
<Identifier>::=
<regular identifier>

<delimited identifier>

Regular Identifier

An SQL-99 identifier is a dictionary object identifier that conforms to the rules of SQL-99. SQL-
99 states that identifiers for dictionary objects are limited to 128 characters and are case-
insensitive (unless delimited by double quotes). User cannot use reserved words as identifiers for
dictionary objects unless they are delimited.

Syntax

<regular identifier> ::= <identifier start> [{ <underscore> <identifier part>}...]
<identifier start> ::=<initial alphabetic character>

<underscore>

<identifier part> ::=<initial alphabetic character>

<digit>

<initial alphabetic character> ::= <simple latin lower case letter>
<simple latin upper case letter>

<simple latin lower case letter>::=
alblcldlelflglhliljlkllImInlolplglrisitiulviwlxlylz
<simple latin upper case letter>::=
AIBICIDIEIFIGIHITIJIKILIMINIOIPIQIRISITIUIVIWIXIYIZ
<underscore> ::= _

<digit> = OIT1213141516171819

Identifier Start

Identifier Start should be an alphabetic character and an underscore. It should not contain any digit
or special characters.

Identifier Part

Identifier Part should be an alphabetic character, an underscore and a sequence of digits. It should
not include any special character except underscore.

Daffodil DB 13

Daffodil DB SQL Reference Guide

J2EE Certified

Examples of valid identifiers
ABCDEDF

_ABCDE

_A1234

Examples of invalid identifiers

1ABCD (starts with digit)

Abc$% (includes special characters $ %)

Delimited Identifier

A delimited identifier is an identifier specified in double quotes. Any word, including keywords, can be
a delimited identifier. Enclosing a name in double quotation marks preserves the case of the name.
A reserved word can be part of an identifier, such as DEFAULT_TABLE, only to the extent when it is
not exactly the same as the keyword itself.

Syntax
<delimited identifier> ::= <double quote> <delimited identifier body>... <double quote>
<delimited identifier body> ::= <Simple Latin Letter>| <Special Characters>| <digit>

Simple Latin Letter

Simple Latin Letter is a collection of simple Latin upper case letter and a collection of simple
Latin lower case letter. It means delimited identifier can contain any alphabetic character.

Special Characters

Special Characters is a collection of special character symbols like ! @#$%"&*()-=+etc. and any
digit (0-9). It means delimited identifier can contain any special character, as double quotes
delimit the meaning of these characters in the identifier.

The enclosing quotation marks are not the part of an identifier; they indicate only its beginning and
end. To include a double quotation mark character in a delimited identifier, precede it with another
double quotation mark.

Example
Valid Delimited Identifiers are:

“SELECT” (double quotes delimit the meaning of reserved word “Select”)
“$1234” (double quotes delimit the meaning of special character “$”)

Daffodil DB 14

Daffodil DB SQL Reference Guide

J2EE Certified

Data Types

Data type defines the type of data a column can contain.
Syntax

<data type> ::=

<predefined type>

| <domain name>

Predefined Type

These are the data types defined by Daffodil DB. They are:

* Character String

* Binary Large Object String
* Numeric

* Boolean

* Date-time

Syntax

<predefined type> ::=
<character string type>

I<binary large object string type>
| <numeric type>

| Boolean

| <date-time type>

Character String Type

It stores character (alphanumeric) data, which are words and free-form text, in the database
character set.

Syntax

<character string type> ::=

CHARACTER [<left paren> <length> <right paren> |

| CHAR [<left paren> <length> <right paren>]

| CHARACTER VARYING <left paren> <length> <right paren>
| CHAR VARYING <left paren> <length> <right paren>

| VARCHAR <left paren> <length> <right paren>

| VARCHAR

Daffodil DB 15

Daffodil DB SQL Reference Guide

J2EE Certified

| VARCHAR? [<left paren> <length> <right paren>]

| CHARACTER LARGE OBJECT [<left paren> <large object length> <right paren>]
| CHAR LARGE OBJECT [<left paren> <large object length> <right paren>]

| CLOB [<left paren> <large object length> <right paren>]

| LONG VARCHAR [<left paren> <large object length> <right paren>]

Character or Char

The CHARACTER or char data type accepts character strings of a fixed length. Length of the
character string should be specified in the data type declaration.

Syntax character[(n)], char[(n)]
Corresponding Compile-Time Java Type Jjava.lang.String

JDBC Metadata Type (java.sql.Types) CHAR

Default Value Null

Minimum Value N.A

Maximum Value N.A

Size N.A

Maximum Size 4K

Note:- 1). (n) OR (In) means length in digits.
2). [(n)] OR [(In)] means length in digits but optional.
3.) [(pL,(s)])] means precision and scale in digits but
optional.

Example
CHARACTER (n) or Char (n)

where, n represents the desired length of the character string. The length parameter may take any
value from 1 to 4192. If length is not specified during the declaration, then 1 is taken by default.

Daffodil DB 16

Daffodil DB SQL Reference Guide

J2EE Certified

Character Varying or Char Varying or Varchar or Varchar2

This data type accepts character strings, of a variable length, up to the maximum length specified
in the data type declaration. This declaration must include a positive integer in parentheses to
define the maximum allowable character string length.

Syntax character varying(n), char varying(n),
varchar[(n)]

Corresponding Compile-Time Java Type Jjava.lang.String

JDBC Metadata Type (java.sql.Types) VARCHAR

Default Value Null

Minimum Value N.A

Maximum Value N.A

Size N.A

Maximum Size 4K

Example

VARCHAR (n) or VARCHAR?2 (n) or CHAR VARYING (n) or CHARACTER VARYING (n)

or VARCHAR or VARCHAR2

It can accept any length of character string up to n characters in length. The length parameter may
take any value from 1 to 4192.

Character Large Object or Char Large Object or CLOB or Long Varchar

These data type accepts character strings, of a large length, up to the maximum length specified in
the data type declaration. These are mostly used for columns, which can have data more than 4192

characters.

Syntax character large object(In), char large object(In),
clob[(In)]

Corresponding Compile-Time Java Type Jjava.sql.Clob

JDBC Metadata Type (java.sql.Types) CLOB

Default Value Null

Minimum Value N.A

Maximum Value N.A

Size N.A

Daffodil DB 17

Daffodil DB SQL Reference Guide

J2EE Certified

Example

CLOB (n) or CHAR LARGE OBJECT (n) or CHARACTER LARGE OBJECT (n) or LONG
VARCHAR (n)

It can accept any length of character string up to n characters in length. The length parameter may
take any value from 1 to 1073741823. If large object length is not specified then 1073741823, is
taken by default.

Daffodil DB 18

Daffodil DB SQL Reference Guide

J2EE Certified

Binary Large Object String Type

Syntax

<binary large object string type> ::=

BLOB [<left paren> <large object length> <right paren>]

| LONG VARBINARY [<left paren> <large object length> <right paren>]
| VARBINARY <left paren> <length> <right paren>

| VARBINARY

| BINARY [<left paren> <length> <right paren>]

Binary

The BINARY data type accepts binary strings, of a fixed length. Length of binary string should be
specified in the data type declaration.

Syntax binary[(n)]
Corresponding Compile-Time Java Type java.lang.byte[]
JDBC Metadata Type (java.sql.Types) BINARY
Default Value Null
Minimum Value -128
Maximum Value 127

Size N.A
Maximum Size 4K

BINARY (n)

Where, n represents desired length of the binary string. The length parameter may take any value
from 1 to 4192. If no length is specified during the declaration, 1 is taken as default length.

Daffodil DB 19

J2EE Certified

Varbinary

Daffodil DB SQL Reference Guide

VARBINARY data type accepts binary strings of a variable length, which is up to the maximum
length specified in the data type declaration. These declarations may include a positive integer in
the parentheses to define maximum allowable character string length.

Syntax

varbinary[(n)]

Corresponding Compile-Time Java Type

java.lang.byte[]

JDBC Metadata Type (java.sql.Types) VARBINARY
Default Value Null
Minimum Value -128
Maximum Value 127

Size N.A
Maximum Size 4K

Example
VARBINARY (n) or VARBINARY

It can accept any length of binary string up to n characters in length. The length parameter may
take any value from 1 to 4192. If no length is specified during the declaration, the default length is

1.
BLOB or Long Varbinary

These data type accepts binary strings, of a large length, and is up to the maximum length
specified in the data type declaration. These are mostly used for columns, which can have data

more than 4192 characters.

Syntax

blob[(In)] or long varbinary[(In)]

Corresponding Compile-Time Java Type

java.lang.Blob

JDBC Metadata Type (java.sql.Types)

BLOB or LONG VARBINARY

Default Value Null
Minimum Value N.A
Maximum Value N.A
Size N.A
Maximum Size 1 GB

Daffodil DB

20

Daffodil DB SQL Reference Guide

J2EE Certified

Example
BLOB(n) or LONG VARBINAY (n)

It can accept any length of binary string up to n characters in length. The length parameter may
take any value from length 1 to 1073741823. If large object length is not specified, then
1073741823 is taken by default.

Numeric Type

The types which stores number type values.
Syntax

<numeric type> ::=

<exact numeric type>

l<approximate numeric type>

Exact Numeric Type

Exact numeric types are data types that store data in the form of numbers.
Syntax

<exact numeric type> ::=

NUMERIC [<left paren> <precision> [<comma> <scale> | <right paren>]
| DECIMAL [<left paren> <precision> [<comma> <scale> | <right paren>]
| DEC [<left paren> <precision> [<comma> <scale> | <right paren>]

I NUMBER [<left paren> <precision> [<comma> <scale> | <right paren>]
I INTEGER

[INT

| SMALLINT

I LONG

IBYTE

| TINYINT

| BIGINT

Daffodil DB 21

Daffodil DB SQL Reference Guide

J2EE Certified

NUMERIC or DECIMAL or DEC or NUMBER

The DECIMAL, NUMERIC, NUMBER or DEC data types accept fixed-precision decimal
values, for which you may define a precision and a scale in the data type declaration. The
precision is a positive integer that indicates the number of digits that the number will contain. The
scale is a positive integer that indicates a number of these digits that will represent decimal places
to the right of the decimal point.

Syntax numeric[(p[.(s)])] or decimal[(p[.(s)])] or
dec[(pL.(s)])]

Corresponding Compile-Time Java Type java.math.BigDecimal

JDBC Metadata Type (java.sql.Types) NUMERIC or DECIMAL

Default Value Null

Minimum Value N.A

Maximum Value N.A

Size N.A

Maximum Size Numeric(38), Decimal(28)

These data types can be declared in any one of three different ways as illustrated.below.
Examples

DECIMAL - Precision defaults to 38, Scale defaults to 0
DECIMAL (p) — Scale defaults to 0

DECIMAL (p, s) — Precision and Scale are defined by the user
NUMERIC - Precision defaults to 38, Scale defaults to O
NUMERIC (p) — Scale defaults to 0

NUMERIC (p, s) — Precision and Scale are defined by the user
DEC — Precision defaults to 38, Scale defaults to 0

DEC (p) — Scale defaults to 0

DEC (p, s) — Precision and Scale are defined by the user
NUMBER - Precision defaults to 38, Scale defaults to O
NUMBER (p) — Scale defaults to 0

NUMBER (p, s) — Precision and Scale are defined by the user

In the above examples, p is an integer representing precision and s is an integer representing scale.

Daffodil DB 22

Daffodil DB SQL Reference Guide

J2EE Certified

INTEGER or INT

The INTEGER or INT data type accepts a 64-bit signed integer value with an implied scale of
zero. It stores any integer value between the range 2” -31 and 2731 —1 (i.e. 2147483648 to

2147483647).

Syntax int, integer
Corresponding Compile-Time Java Type java.lang.Integer
JDBC Metadata Type (java.sql.Types) INTEGER
Default Value Null

Minimum Value -2147483648
Maximum Value 2147483647
Size 4

Maximum Size N.A

Examples of INTEGER or INT Valid Values
-2147483648

-1025

0

2147483647

SMALLINT

The SMALLINT data type accepts a 16 bit signed integer value with an implied scale of zero. It
stores any integer value between the range 2 -15 and 215 -1 (i.e. —32768 to 32767).

Syntax smallint

Corresponding Compile-Time Java Type java.lang.Short

JDBC Metadata Type (java.sql.Types) SMALLINT

Default Value Null

Minimum Value -32768

Maximum Value 32767

Size 2

Maximum Size N.A

Daffodil DB 23

Daffodil DB SQL Reference Guide

J2EE Certified

Examples of SMALLINT Valid Values
-32768

0

32767

LONG or BIGINT

The LONG or BIGINT data type can accept numeric values up to 8 bytes. It stores any integer
value between the range of 9223372036854775807 and -9223372036857447808.

Syntax long, bigint
Corresponding Compile-Time Java Type java.lang.Long

JDBC Metadata Type (java.sql.Types) BIGINT

Default Value Null

Minimum Value -9223372036854775808
Maximum Value 9223372036854775807
Size 8

Maximum Size N.A

Examples of BIGINT or LONG Valid Values
-3372036857447808

-857447808

0

23372036854775807

Daffodil DB 24

Daffodil DB SQL Reference Guide

J2EE Certified

BYTE or TINYINT

The BYTE or TINYINT data type accepts an 8-bit signed integer value with an implied scale of
zero. It stores any integer value between the range 2” -7 and 27 —1 (i.e. —128 to 127).

Syntax tinyint, byte
Corresponding Compile-Time Java Type java.lang.Byte
JDBC Metadata Type (java.sql.Types) TINYINT
Default Value Null
Minimum Value -128
Maximum Value 127

Size 1

Maximum Size N.A

Examples of BYTE or TINYINT Valid Values
-128

0

127

Approximate Numeric Type

Approximate numeric data types stores data in form of numbers, which represents approximate
values.

Syntax

<approximate numeric type> ::=

FLOAT [<left paren> <precision> <right paren>]
| REAL

| DOUBLE PRECISION

Daffodil DB 25

Daffodil DB SQL Reference Guide

J2EE Certified

Float

The FLOAT data type accepts a double precision floating point number value. If no precision is
specified during the declaration, the default precision is 15.

Syntax float[(n)]

Corresponding Compile-Time Java Type java.lang.Double

JDBC Metadata Type (java.sql.Types) FLOAT

Default Value Null

Minimum Value 4 9E-324

Maximum Value 1.7976931348623157E308
Size 4

Maximum Size 15

Examples of FLOAT (7) Valid Values
1234567

1.2

123.45678

-1234567

-1.2

-123.4567

Daffodil DB 26

Daffodil DB SQL Reference Guide

J2EE Certified

Real

The REAL data type accepts single-precision floating point number values.
Syntax real

Corresponding Compile-Time Java Type java.lang.Float

JDBC Metadata Type (java.sql.Types) REAL

Default Value Null

Minimum Value 1.40E-45

Maximum Value 3.4028235E38

Size 4

Maximum Size N.A

Examples of REAL Valid Values
-2345

0

1E-3

1.245
123456789012345678901234567890

Double Precision

The DOUBLE PRECISION data type accepts a double precision floating point value. No
parameters are required when declaring a DOUBLE PRECISION data type.

Syntax double precision

Corresponding Compile-Time Java Type java.lang.Double

JDBC Metadata Type (java.sql.Types) DOUBLE

Default Value Null

Minimum Value 4.9E-324

Maximum Value 1.7976931348623157E308

Size 8

Maximum Size N.A

Daffodil DB 27

Daffodil DB SQL Reference Guide

J2EE Certified

Examples of DOUBLE PRECISION Valid Values
4567890123456789012345
-1267890123456789012

Boolean

The BOOLEAN data type accepts a single value that can be TRUE or FALSE. No parameters
are required when declaring a BOOLEAN data type.

Syntax boolean
Corresponding Compile-Time Java Type java.lang.Boolean
JDBC Metadata Type (java.sql.Types) BOOLEAN
Default Value Null

Minimum Value N.A

Maximum Value N.A

Size 1

Maximum Size N.A

Date-time Type
The date-time data type can be DATE, TIME or TIMESTAMP.

Syntax
<datetime type> ::=

DATE
| TIME [<left paren> <time precision> <right paren>]

| TIMESTAMP [<left paren> <timestamp precision> <right paren> |

Daffodil DB 28

Daffodil DB SQL Reference Guide

J2EE Certified

Date

The DATE data type accepts date values, consisting of Year, Month, and Day. Date values

should be specified in the form YYYY-MM-DD.

Month values must be between 1 and 12.

Day values should be between 1 and 31 depending on the month and Year values should be

between 0 and 9999.

Values assigned to the DATE data type should be enclosed in single quotes, preceded by the
keyword DATE.

Syntax date
Corresponding Compile-Time Java Type java.sqgl.Date
JDBC Metadata Type (java.sql.Types) DATE
Default Value Null
Minimum Value N.A
Maximum Value N.A

Size 10
Maximum Size N.A

Example
DATE ’1999-04-04".

Daffodil DB

29

Daffodil DB SQL Reference Guide

J2EE Certified

Time

The TIME data type accepts time values, consisting of Hours, Minutes, and Seconds. Time
values should be specified in the form HH:MM:SS.

The minutes and seconds values must be two digits. Hour values should be between zero 0 and 23.
Minute values should be between 00 and 59 and Second values should be between 00 and 59.
Values assigned to the TIME data type should be enclosed in single quotes, preceded by the

keyword TIME.

Syntax time[(n)]
Corresponding Compile-Time Java Type java.sqgl.Time
JDBC Metadata Type (java.sql.Types) TIME
Default Value Null
Minimum Value N.A
Maximum Value N.A

Size N.A
Maximum Size 9

Example

TIME 07:30:00.

Daffodil DB 30

J2EE Certified

Time Stamp

Daffodil DB SQL Reference Guide

The TIMESTAMP data type accepts timestamp values, which are a combination of a DATE
value and a TIME value. Timestamp values should be specified in the form YYYY-MM-DD

HH:MM:SS.

There is a space separator between the date and time portions of the timestamp. Month values
must be between 1 and 12. Day values should be between 1 and 31 depending on the month and
Year values should be between 0 and 9999. Hour values should be between zero 0 and 23. Minute
values should be between 00 and 59 and Second values should be between 00 and 59. Values
assigned to the TIMESTAMP data type should be enclosed in single quotes, preceded by keyword

TIMESTAMP.

Syntax

timestamp[(n)]

Corresponding Compile-Time Java Type

java.sgl.TimeStamp

JDBC Metadata Type (java.sql.Types) TIMESTAMP
Default Value Null
Minimum Value N.A
Maximum Value N.A

Size N.A
Maximum Size 9

Example
TIMESTAMP °1999-04-04 07:30:00°.

If the values are not in the specified ranges then Daffodil DB will convert them into valid values.
Like if date is specified as 2001-12-31 then it will become 2002-01-01.

Domain Name

It is the name of the domain which represents data type with all its properties and constraints for
value. Domains are defined, mainly when same properties of the data types are required

frequently.

Daffodil DB

31

Daffodil DB SQL Reference Guide

J2EE Certified

Literals

Literals are a type of expression that specifies a constant value (they are also called constants).
There are various types of literals like Numeric Literal, Character String Literal, and Date-Time Literal
etc.

<Literals>::=

<Character String Literal>
| <Date-Time Literal>

| <Numeric Literal>

| <Boolean Literal>

Character String Literal

The Character String Literal is a constant text literal. It can contain any alphabetic character,
digit and special characters. The Character String Literal should be enclosed within single quotes.
With the help of the quotes, database engine understands and treats it as constant.

Syntax

<character string literal>::= <quote> <text literal identifier body> <quote>
Examples of valid Character String Literal

‘abd323’

‘122djcvdjrtsns

90000C

Examples of invalid Character String Literal

‘cbcbmm

“scbdcdcb

Numeric Literal

Numeric Literal is used to specify a valid integer, double etc in expressions, SQL functions, and
SQL statements.

Syntax

<Numeric Literal>::=

<Rep Digit>

<period> <Rep Digit>

| <Rep Digit> <period> <Rep Digit>

| <Rep Digit> {e | E} <Rep Digit>
<Rep digit>::= <digit>
<digit>:=0111213141516171819

Daffodil DB 32

Daffodil DB SQL Reference Guide

J2EE Certified

A digitisone of 0, 1,2, 3,4,5,6,7, 8 or 9.

e or E indicates that the number is specified in scientific notation. The digits after E specify
exponent and digits before E specify mantissa.

Examples of <Rep Digit> valid values

0

22

33

Examples of <Period> <Rep Digit> valid values
23

3

Example of <Rep Digit> <period> <Rep Digit> valid values
22.22

2.33

333

Example of <Rep Digit> E <Rep Digit> valid values
2E3
2E34

Date-Time Literal

Date-Time Literal is used to specify a date literal, time literal and timestamp literal in
expressions, SQL Statements and Functions.

Syntax

<Date Time Literal>::=
<Date Literal>

<Time Literal>

<Time Stamp Literal>
Date Literal

Date Literal is used to specify a constant Date value in a specific format. This date value can be
used in SQL Statements and Functions.

Format for specifying a date literal is: DATE ‘YYYY-MM-DD’

Syntax

DATE ‘<unsigned integer> <hyphen> <unsigned integer> <hyphen> <unsigned integer>’
<unsigned integer>::= <Rep Digit>

<Rep Digit>::= <digit>. . .<hyphen>::= -

Daffodil DB 33

Daffodil DB SQL Reference Guide

J2EE Certified

Examples of valid Date Literals
DATE 2002-06-28’
DATE 2001-06-28’

Time Literal

Time Literal is used to specify a constant Time value in a specific format. This Time value can
be used in SQL Statements and Functions.

Format for specifying a time literal is: TIME ‘HH:MM:SS’

Syntax

TIME ‘<unsigned integer> <colon> <unsigned integer> <colon> <unsigned integer>’
<unsigned integer>::= <Rep Digit>

<Rep Digit>::= <digit>. . .

<colon>::=:

Examples of valid Time Literals

TIME °12:06:12°

TIME °13:06:28’

TimeStamp Literal

TimeStamp Literal is used to specify a constant TimeStamp value in a specific format. This
TimeStamp value can be used in SQL Statements and Functions.

Format for specifying a TimeStamp literal is: TIMESTAMP ‘YYYY-MM-DD HH:MM:SS’

Syntax

TIMESTAMP ‘<unsigned integer> <hyphen> <unsigned integer> <hyphen> <unsigned integer>
<space> <unsigned integer> <colon> <unsigned integer> <colon> <unsigned integer>’

unsigned integer>::= <Rep Digit>
<Rep Digit>::= <digit>

<colon>::=:

<space>::=

Example of valid Timestamp Literals
TIMESTAMP °2002-06-28 12:06:12’
TIMESTAMP °2001-06-28 12:06:28’

Daffodil DB 34

Daffodil DB SQL Reference Guide

J2EE Certified

Boolean Literal

Boolean Literal is a single constant value specifying TRUE or FALSE.
<Boolean Literal>::=

TRUE

FALSE

Examples of valid Boolean Literals

TRUE

FALSE

Daffodil DB 35

Daffodil DB SQL Reference Guide

J2EE Certified

Functions

Daffodil DB provides few built-in functions to perform in-statement operations while querying or
inserting data into a database. Functions are a type of SQL expression that return a value based on
the argument they are supplied.

<Functions>::=<Numeric Functions>
<Date Time Functions>

<String Functions>

<System Functions>

<Aggregate Functions>

<Special Functions>

Numeric Functions

Numeric Functions accept numeric expression as input and return numeric values as output. There
are various numeric functions like ATAN, TAN, and SQRT etc.

Date Time Functions

Date Functions accept Date Time Expression as input and return numeric or string values as
output according to the return type of the function. There are various Date Time Functions like
DAYNAME, YEAR and MONTH etc.

String Functions

String Functions accept String Expression as input and return string values as output. There are
various String Functions like SUBSTRING, LTRIM and RTRIM etc.

System Functions

System Functions accept nothing as argument and return numeric or string values as output
according to the return type of the function. There are various System Functions like DATABASE
and USER etc.

Aggregate Functions

Aggregate Functions accept Expression as input and return numeric values as output. Aggregate
Functions operate on group of records to perform aggregate operations. There are various
Aggregate Functions like SUM, AVG and MAX etc.

Special Functions

There is only single Special Function, which takes numeric value as input. The function is Top
Function. Functionality performed by Top Function is to select the topmost specified rows from
Result Set as an output.

If you call a built-in function with an argument of a data type other than the data type expected by
the built-in function, Daffodil DB implicitly converts the argument to the expected data type
before performing the required operation.

Daffodil DB 36

Daffodil DB SQL Reference Guide

J2EE Certified

Numeric Functions

Numeric Functions are special built-in functions for specific purposes. Numeric Functions either
take zero, one or more numeric expressions as input. These functions act as special operators in
the database identified by keywords in the database. Various functions are performed by these
special operators like square root, floor, ceiling etc.

Syntax

<Numeric Functions> ::=
<absolute value expression>
<modulus expression>
<sine function>
<power function>
<round function>
<sqrt function>
<truncate function>
<floor function>
<ceiling function>
<log function>

<exp function>

<cos function>

<tan function>

<cot function>

<acos function>

<asin function>

<atan function>
<degrees function>
<radians function>
<pi function>

<atan2 function>
<rand function>

<sign function>

Daffodil DB 37

Daffodil DB SQL Reference Guide

J2EE Certified

Absolute Value Expression

The absolute value expression is used to take absolute value of a numeric expression passed as an
argument to it.

Syntax
ABS <left paren> <numeric expression> <right paren>

Numeric Expression is passed as input to the absolute function. The function calculates and
returns an absolute value of any given expression.

If the argument is not negative, the argument is returned.

If the argument is negative, the negation of the argument is returned.
Example

Select ABS (ParentMarksCarryingForward) as C from Exam

The above query results in a Result Set containing absolute value of column
‘ParentMarksCarryingForward’ under column heading ‘C’

Result

C

25
20
20

Daffodil DB 38

Daffodil DB SQL Reference Guide

J2EE Certified

Modulus Value Expression

The modulus value expression is used to take modulus value of a numeric expression, dividend
with divisor being numeric expression are passed as arguments.

Syntax

MOD <left paren> <numeric expression dividend> <comma>
<numeric expression divisor> <right paren>

<numeric expression dividend> ::= <numeric expression>
<numeric expression divisor> ::= <numeric expression>

Numeric Expression dividend passed as input to modulus function is divided by Numeric
Expression divisor and remainder is calculated and returns as the modulus value of an expression.

Example
Select MOD (ParentMarksCarryingForward, 2) as C from Exam

The above query results in a Result Set containing modulated value of column
‘ParentMarksCarryingForward’ under column heading ‘C’.

Result

C
0.0
1.0
0.0
0.0

Daffodil DB 39

Daffodil DB SQL Reference Guide

J2EE Certified

Sine Function

The sine function is used to calculate sine value of a numeric expression passed as an argument.
Syntax
SIN <left paren> <numeric expression> <right paren>

Numeric Expression is passed as input to sine function. The function calculates and returns the
trigonometric sine of an angle. Argument passed is: Angle in Radians.

Example
Select SIN (ParentMarksCarryingForward) as C from Exam

The above query results in a Result Set containing trigonometric sine value of column
‘ParentMarksCarryingForward’ under column heading ‘C’

Result

C
0.0
-0.13235175009777303
0.9129452507276277
0.9129452507276277

Power Function

The power function is used to return value of the first argument raised to the power of the second
argument.

Syntax

POWER <left paren> <numeric expression> <comma> <numeric expression> <right paren>
If the second argument is positive or negative zero, then the result is 1.0.

If the second argument is 1.0, then the result is the same as the first argument.

Example

Select Power (ParentMarksCarryingForward, 2) as C from Exam

The above query results in a Result Set containing value of the column
‘ParentMarksCarryingForward’ raised to the power 2 under column heading ‘C’.

Result

C
0.0
625.0
400.0
400.0

Daffodil DB 40

Daffodil DB SQL Reference Guide

J2EE Certified

Rand Function

Rand Function generates a random number using numeric expression passed as the initial seed.
Syntax
RAND <left paren> <numeric expression> <right paren>

Numeric Expression is passed as input to a random function. The function calculates and returns a
new random number generated using the argument passed.

Example

Select RAND (ParentMarksCarryingForward) as C from Exam where
ParentMarksCarryingForward > 0

The above query returns a random number using ‘ParentMarksCarryingForward’ as initial seed
under column heading ‘C’.

Result

C
0.7315948009490967
0.7320427298545837
0.7320427298545837

SORT Function

SQRT Function calculates square root of a numeric expression passed as an argument.

Syntax
SQRT <left paren> <numeric expression> <right paren>

Numeric Expression is passed as an input to the sqrt function. The function calculates and returns
square root of the numeric expression.

Example
Select SQRT (ParentMarksCarryingForward) as C from Exam

The above query returns square root of ‘ParentMarksCarryingForward’ under column heading ‘C’
in the Result Set.

Result

C
0.0
5.0
4.47213595499958
4.47213595499958

Daffodil DB 41

Daffodil DB SQL Reference Guide

J2EE Certified

TRUNCATE Function

TRUNCATE Function truncates the number (first argument numeric expression) to (second
argument numeric expression) places.

Syntax

TRUNCATE <left paren> <numeric expression> <comma> <numeric expression> <right paren>
First Argument Numeric Expression is the number to be truncated.
Second Argument Numeric Expression is the places to which it is to be truncated.

Example

Select TRUNCATE (ParentMarksCarryingForward, 1) as C from Exam where
ParentMarksCarryingForward > 0

The above query returns value of column ‘ParentMarksCarryingForward’ truncated to 1 place
under column heading ‘C’ in the Result Set.

Result

C
25
20
20

FLOOR Function

The Floor function returns the largest (closest to positive infinity) double the value that is not
greater than the argument and is equal to a mathematical integer.

Syntax
FLOOR <left paren> <numeric expression> <right paren>

If the argument value is already equal to a mathematical integer, then the result is the same as the
argument, it means Largest integer <= number.

Argument passed is a Numeric Expression.

Example

Select FLOOR (ParentMarksCarryingForward) as C from Exam where ParentMarksCarryForward
>0

Result

C
25

20

20

Daffodil DB 42

Daffodil DB SQL Reference Guide

J2EE Certified

CEILING Function

The Ceiling function returns the smallest (closest to negative infinity) double the value that is not
lesser than the argument and is equal to a mathematical integer.

Syntax

CEILING <left paren> <numeric expression> <right paren>

If the argument value is already equal to a mathematical integer, then the result is the same as the
argument, it means Smallest integer >= number.

Argument passed is a Numeric Expression.

Example

Select CEILING (ParentMarksCarryingForward) as C from Exam where
ParentMarksCarryingForward > 0

Result

C
25
20
20

L.OG Function

The Log function returns the natural logarithm (base e) of double the value passed as an argument.

Syntax
LOG <left paren> <numeric expression> <right paren>

If the argument is less than zero, then the result is NaN.

If the argument is positive infinity, then the result is positive infinity.

If the argument is positive zero or negative zero, then the result is negative infinity.
Argument passed is a Numeric Expression.

Example

Select LOG (-23) as C from Post

Result

C
NaN
NaN
NaN

Daffodil DB 43

Daffodil DB SQL Reference Guide

J2EE Certified

Select LOG (23) as C from Post
Result

C
3.1354942159291497
3.1354942159291497
3.1354942159291497

EXP Function

The EXP function returns the exponential number e (i.e., 2.718...) raised to the power of double
the value passed as an argument.

Syntax
EXP <left paren> <numeric expression> <right paren>

Exponential function of an argument passed.
Argument passed is a Numeric Expression.

Example

Select EXP (ParentMarksCarryingForward) as C from Exam where ParentMarksCarryingForward
>0

Result

C

7.200489933738588E10
4.8516519540979037E8
4.8516519540979037E8

Daffodil DB 44

Daffodil DB SQL Reference Guide

J2EE Certified

COS Function

The COS function returns trigonometric cosine of an angle.

Syntax
COS <left paren> <numeric expression> <right paren>

If the argument is NaN or infinity, then the result is NaN.
Argument passed is Angle in Radians.

Example

Select COS (ParentMarksCarryingForward) as C from Exam

The above query results in a Result Set containing trigonometric COS value of the column
‘ParentMarksCarryingForward’ under the column heading ‘C’

Result

C
1.0
-0.9912028118634736
0.40808206181339196
0.40808206181339196

TAN Function

The TAN function returns the trigonometric tangent of an angle.

Syntax
TAN <left paren> <numeric expression> <right paren>

If the argument is NaN or infinity, then the result is NaN.
Argument passed is Angle in Radians.

Example

Select TAN (ParentMarksCarryingForward) as C from Exam

The above query results in a Result Set containing trigonometric tan value of the column
‘ParentMarksCarryingForward’ under column heading ‘C’.

Result

C

0.0
-0.13352640702153587
2.237160944224742
2.237160944224742

Daffodil DB 45

Daffodil DB SQL Reference Guide

J2EE Certified

COT Function

The COT function returns the trigonometric Cotangent of an angle in radians.

Syntax
COT <left paren> <numeric expression> <right paren>

If the argument is NaN or infinity, then the result is NaN.
Argument passed is Angle in Radians.

Example

Select COT (ParentMarksCarryingForward) as C from Exam

The above query results in a Result Set containing trigonometric COT value of the column
‘ParentMarksCarryingForward’ under column heading ‘C’.

Result

C
Infinity
-7.489155308722675
0.44699510899489167
0.44699510899489167

ACOS Function

The ACOS function returns the arc cosine of an angle, in the range of 0.0 through pi.

Syntax
ACOS <left paren> <numeric expression> <right paren>

If the argument is NaN or its absolute value is greater than 1, then the result is NaN.
Parameter passed is double the value whose arc cosine is to be returned.

Function returns arc cosine of the argument.

Daffodil DB 46

Daffodil DB SQL Reference Guide

J2EE Certified

Example
Select ACOS (ParentMarksCarryingForward) as C from Exam

The above query results in a Result Set containing trigonometric arc COS value of column
‘ParentMarksCarryingForward’ under column heading ‘C’.

Result

C
1.5707963267948966

NaN

NaN
NaN

ASIN Function
The ASIN function returns the arc sine of an angle, in the range of -pi/2 through pi/2.

Syntax

ASIN <left paren> <numeric expression> <right paren>

If the argument is NaN or its absolute value is greater than 1, then the result is NaN.
Parameter passed is a double value whose arc sine is to be returned.

Function returns arc sine of the argument.

Example

Select ASIN (ParentMarksCarryingForward) as C from Exam

The above query results in a Result Set containing trigonometric arc sin value of the column
‘ParentMarksCarryingForward’ under column heading ‘C’

Result

C
0.0

NaN
NaN
NaN

ATAN Function

The ATAN function returns the arc tangent of an angle, in the range of -pi/2 through pi/2, where
value of piis 3.14

Syntax

ATAN <left paren> <numeric expression> <right paren>

If the argument is NaN or infinity, then the result is NaN.

Daffodil DB 47

Daffodil DB SQL Reference Guide

J2EE Certified

Argument passed is double the value whose arc tangent is to be returned.
Returns arc tangent of the argument.

Example

Select ATAN (ParentMarksCarryingForward) as C from Exam

The above query results in a Result Set containing trigonometric arc tan value of the column
‘ParentMarksCarryingForward’ under column heading ‘C’.

Result

C

0.0

1.5308176396716067
1.5208379310729538

1.5208379310729538

DEGREES Function

The Degrees function converts an angle measured in radians to the equivalent angle measured in
degrees.

Syntax
DEGREES <left paren> <numeric expression> <right paren>

Argument passed is an angle, in radians.

Function returns the measurement of the angle passed in degrees.
Example

Select DEGREES (10) as C from Post

Result

C
572.9577951308232
572.9577951308232
572.9577951308232

Daffodil DB 48

Daffodil DB SQL Reference Guide

J2EE Certified

RADIANS Function

The Radians function converts an angle measured in degrees to the equivalent angle measured in
radians.

Syntax
RADIANS <left paren> <numeric expression> <right paren>

Argument passed is an angle, in degrees.

Function returns measurement of the angle passed in radians.
Example

Select RADIANS (180) as RADIANS from Exam

Result

RADIANS

3.14159265358979323
3.14159265358979323
3.14159265358979323
3.14159265358979323

PI Function

The PI function Double the value that is closer than any other number to pi, the ratio of the
circumference of a circle to its diameter.

Value of Pl is 3.141592653589793.
Syntax

PI <left paren> <right paren>
Function returns the value of PL
Example

Select PI () as PI from Exam
Result

PI
3.141592653589793
3.141592653589793
3.141592653589793
3.141592653589793

Daffodil DB 49

Daffodil DB SQL Reference Guide

J2EE Certified

ATAN2 Function
The ATAN2 function converts the rectangular coordinates (b, a) to polar (r, theta).

This method computes the phase theta by computing the arc tangent of a/b in the range of -pi to pi.
Syntax

ATAN?2 <left paren> <numeric expression> <comma> <numeric expression> <right paren>

First Argument passed to a function is double the value, i.e. b.

Second Argument passed to a function is double the value, i.e. a.

Function returns theta component of the point (r, theta) in polar coordinates that corresponds to the
point (b, a) in Cartesian coordinates.

Example
Select ATAN2 (360, 45) as C from Exam

Result

C
1.446441332248135
1.446441332248135
1.446441332248135
1.446441332248135

ROUND Function

The Round function is used to round a number towards its "nearest possible neighbor". Round
Function rounds a number to places.

Syntax

ROUND <left paren> <numeric expression> <comma> <numeric expression> <right paren>

First Argument is the number to be rounded. Second Argument is places to which the number
should be rounded off.

Example
Select ROUND (5.671495, 4) as C from Post

Result

C
5.6715
5.6715
5.6715

Daffodil DB 50

Daffodil DB SQL Reference Guide

J2EE Certified

SIGN Function

The Sign Function determines the sign of the numeric expression passed as an argument.

Syntax
SIGN <left paren> <numeric expression> <right paren>

Numeric Expression is passed as an argument.

If Argument passed is less than zero (number < 0) then the result is negative (-1)
If Argument passed is equal to zero (number == 0) then the result is zero (0).

If Argument passed is greater than zero (number > 0) then the result is positive (1).
Example

Select SIGN (-1) as C from Post

Result

Daffodil DB 51

Daffodil DB SQL Reference Guide

J2EE Certified

Date Time Functions

Date Time Functions are special built-in functions for specific purposes. Date Time Functions
either take zero, one or more Date Time Expressions as Input. These functions act as special
operators in the databases and are identified by keywords in the database. Various Functions are
performed by these special operators like monthname, dayOfMonth and dayOfWeek etc.

The declared data type of expression used in Date Time Functions is DATE, TIME or
TIMESTAMP.

Syntax

<Date Time Functions> ::=
<dayname function>

| <dayofmonth function>

| <dayofweek function>

| <dayofyear function>

| <week function>

| <month function>

| <year function>

| <monthname function>

| <hour function>

| <minute function>

| <second function>

| <timestampadd function>
| <timestampdiff function>
| <Curdate function>

| <Curtime function>

| <Curtimestamp function>
| <Date function>

| <Time function>

Daffodil DB 52

Daffodil DB SQL Reference Guide

J2EE Certified

DAYNAME Function

The DAYNAME function returns a character string representing day component of the date, name
for the day, which is specific to the data source.

For Example: Data Source is (Monday, Tuesday, Wednesday,...... Sunday)

Syntax
DAYNAME <left paren> <expression> <right paren>

Example
Select DAYNAME (DateOfJoining) as DateOfJoining from Teacher
Result

DateOfJoining

WEDNESDAY
TUESDAY
FRIDAY
SUNDAY
SATURDAY
TUESDAY
TUESDAY
SUNDAY

DAYOFMONTH Function

An integer from 1 to 31 representing day of the month in a date is returned upon calling the
DAYOFMONTH function.

Syntax
DAYOFMONTH <left paren> <expression> <right paren>

Example
Select DayOfMonth (DateOfJoining) from Teacher
Result

DayOfMonth(DateOfJoining)

17
1

25
25
29
15
15
25

Daffodil DB 53

Daffodil DB SQL Reference Guide

J2EE Certified

DAYOFWEEK Function

The DAYOFWEEK function returns an integer from 1 to 7 representing day of the week in a date;
1 indicates that Sunday is returned after execution of this function.

Syntax
DAYOFWEEK <left paren> <expression> <right paren>

Example
Select DayOfWeek (DateOfJoining) from Teacher

Result

DayOfWeek(DateOfJoining)
4

3

6

DAYOFYEAR Function

An integer from 1 to 366 representing day of the year in a date is returned on executing the
DAYOFYEAR function.

Syntax
DAYOFYEAR <left paren> <expression> <right paren>

Example
Select DayOfYear (DateOfJoining) from Teacher
Result

DayOfYear(DateOfJoining)

108
182
268
298
241
258
258

Daffodil DB 54

Daffodil DB SQL Reference Guide

J2EE Certified

WEEK Function

An integer from 1 to 53 representing week of the year in a date is returned on executing the
WEEK function.

Syntax
WEEK <left paren> <expression> <right paren>

Example
Select Week (DateOfJoining) from Teacher
Result

Week(DateOfJoining)

16
27
39
44
35
38
44

MONTH Function

An integer from 1 to 12 representing month component of a date is returned on executing the
MONTH function.

Syntax
MONTH <left paren> <expression> <right paren>

Example
Select MONTH (DateOfJoining) from Teacher

Result

MONTH(DateOfJoining)

4
7
9
10
8
9
9
10

Daffodil DB 55

Daffodil DB SQL Reference Guide

J2EE Certified

YEAR Function

An integer representing year component of a date is returned on executing the YEAR function.

Syntax
YEAR <left paren> <expression> <right paren>

Example
Select YEAR (DateOfJoining) from Teacher
Result

YEAR(DateOfJoining)

1996
1997
1998
1998
1998
1998
1998
1998

MONTHNAME Function

A character string representing month component of a date is returned on executing the
MONTHNAME function.

The name for the month is specific to the data source.
For Example Data Source is: (January, February, March, December)

Syntax
MONTHNAME <left paren> <expression> <right paren>

Example
Select MONTHNAME (DateOfJoining) from Teacher

Result

MONTHNAME DateOfJoining)

APRIL

JULY
SEPTEMBER
OCTOBER
SEPTEMBER
OCTOBER
OCTOBER

Daffodil DB 56

Daffodil DB SQL Reference Guide

J2EE Certified

HOUR Function

An integer from 0 to 23 representing hour component of time is returned on executing the HOUR
function.

Syntax
HOUR <left paren> <expression> <right paren>

Example
Select HOUR (CURTIME ()) from Teacher
Result

HOUR(CURRENT_TIME)
18

18

18

18

MINUTE Function

An integer from 0 to 59 representing minute component of time is returned on executing the
MINUTE function.

Syntax
MINUTE <left paren> <expression> <right paren>

Example
Select MINUTE (CURTIME ()) from Teacher

Result

MINUTE(CURRENT_TIME)
32

32

32

32

Daffodil DB 57

Daffodil DB SQL Reference Guide

J2EE Certified

SECOND Function

An integer from 0 to 59 representing second component of time is returned on executing the
SECOND function.

Syntax
SECOND <left paren> <expression> <right paren>

Example
Select SECOND (CURTIME ()) from Teacher
Result

SECOND(CURRENT_TIME)
34

34

34

34

TIMESTAMPADD Function

The TIMESTAMPADD function returns the timestamp calculated by adding count number of the
interval(s) to timestamp. An interval may be one of the following:

SQL_TSI_FRAC_SECOND, SQL_TSI_SECOND, SQL_TSI_MINUTE,
SQL_TSI_HOUR, SQL_TSI_DAY, SQL_TSI_WEEK, SQL_TSI_MONTH,
SQL_TSI_QUARTER, or SQL_TSI_YEAR

Syntax

<timestamp denometers> ::=
SQL_TSI_FRAC_SECOND
I SQL_TSI_SECOND

I SQL_TSI_MINUTE

I SQL_TSI_HOUR

I SQL_TSI_DAY

I SQL_TSI_WEEK

I SQL_TSI_MONTH

I SQL_TSI_QUARTER

I SQL_TSI_YEAR

<timestampadd function> ::=

Daffodil DB 58

Daffodil DB SQL Reference Guide

J2EE Certified

TIMESTAMPADD <left paren> <timestamp denometers> <comma> <expressionl><comma>
<expression2> <right paren>

Timestamp Denometers

This argument specifies interval of the Time Stamp to which count is to be added. There are
various types of intervals like:

SQL_TSI FRAC SECOND

Interval is Seconds Fractional Part of Time Stamp.
SOL_TSI SECOND

Interval is Seconds Part of Time Stamp.
SOL_TSI MINUTE

Interval is Minutes Part of Time Stamp.
SQL TSI HOUR

Interval is Hours Part of Time Stamp.

SOL_TSI DAY
Interval is Day Part of Time Stamp.

SQL_TSI WEEK
Interval is Week Part of Time Stamp, in which Week timestamp lies.

SQL_TSI MONTH

Interval is Month of Time Stamp.
SQL_TSI QUARTER

Interval is Quarter Part of Time Stamp. The year in which quarter timestamp lies.
SQOL TSI YEAR

Interval is Year Part of Time Stamp.

Expressionl

This argument expression is a numeric value, which is to be added to a specified interval of Time
Stamp. The declared data type of expression is numeric.

Expression2

Expression2 represents a Time Stamp to which required operations are to be performed. The
declared data type of expression is TimeStamp.

Return type of the function is an object of modified TimeStamp.

Example

Select TIMESTAMPADD (SQL_TSI_SECOND, 34, TIMESTAMP °2002-06-28 17:12:12") AS "TIME
ADDITION IN SECONDS" from Exam

Daffodil DB 59

Daffodil DB SQL Reference Guide

J2EE Certified

Result

TIME ADDITION IN SECONDS

2002-06-28 17:12:46.0
2002-06-28 17:12:46.0
2002-06-28 17:12:46.0
2002-06-28 17:12:46.0

Select TIMESTAMPADD (SQL_TSI_HOUR, 34, TIMESTAMP 2002-6-28 17:12:12°) AS
"TIME ADDITION IN HOURS" from Exam

Result

TIME ADDITION IN HOURS
2002-06-30 03:12:12.0

2002-06-30 03:12:12.0

2002-06-30 03:12:12.0

2002-06-30 03:12:12.0

TIMESTAMPDIFF Function

The TIMESTAMPDIFF function returns an integer representing the number of interval by which
timestamp? is greater than timestampl.

Interval may be one of the following:

SQL_TSI_FRAC_SECOND, SQL_TSI_SECOND, SQL_TSI_MINUTE, SQL_TSI_HOUR,
SQL_TSI_DAY, SQL_TSI_WEEK, SQL_TSI_MONTH, SQL_TSI_QUARTER, or
SQL_TSI_YEAR

Syntax

TIMESTAMPDIFF <left paren> <timestamp denometers> <comma> <expression1> <comma>
<expression2> <right paren>

Timestamp Denometers

This argument specifies the interval of Time Stamp whose count is to be returned. For various
types of intervals, refer to the previous function.

Expressionl

Expressionl represents Time Stamp, which is subtracted from the second argument. Declared data
type of an expression is TimeStamp.

Expression2

Expression2 represents Time Stamp from which first argument is subtracted. Declared data type of
an expression is TimeStamp.

Return type of a function is count of the intervals.

Daffodil DB 60

Daffodil DB SQL Reference Guide

J2EE Certified

Example

Select TIMESTAMPDIFF (SQL_TSI_SECOND, TIMESTAMP 2002-06-28 17:12:12’,
TIMESTAMP 2002-05-28 7:7:7°) AS "TIME DIFFERENCE IN SECONDS" from Exam

Result

TIME DIFFERENCE IN SECONDS

-2714705
-2714705
-2714705
-2714705

Select TIMESTAMPDIFF (SQL_TSI_HOUR, TIMESTAMP °2002-06-28 17:12:12’, TIMESTAMP
'2002-06-28 7:7:7°) AS "TIME DIFFERENCE IN HOURS" from Exam

Result

TIME DIFFERENCE IN HOURS
-10

-10

-10

-10

CURDATE Function

The CURDATE function returns the Current Date of an SQL Session. The declared data type of
the function is DATE.

Syntax
CURDATE <left paren> <right paren>

Example
Select CURDATE () as CURDATE from Exam

Result

CURDATE
2003-10-30

2003-10-30

2003-10-30

2003-10-30

Daffodil DB 61

Daffodil DB SQL Reference Guide

J2EE Certified

CURTIME Function

The CURTIME function returns Current Time of an SQL Session. The declared data type of the
function is TIME.

Syntax
CURTIME <left paren> <right paren>

Example
Select CURTIME () as CURTIME from Exam

Result

CURTIME

18:32:23
18:32:23
18:32:23
18:32:23

CURTIMESTAMP Function

Returns Current Timestamp of an SQL Session. The declared data type of the function is
timestamp.

Syntax
CURTIMESTAMP <left paren> <right paren>

Example
Select CURTIMESTAMP () as CURTIMESTAMP from Exam

Result

2002-06-28 17:12:46.0

2002-06-28 17:12:46.0

2002-06-28 17:12:46.0

2002-06-28 17:12:46.0

Daffodil DB 62

Daffodil DB SQL Reference Guide

J2EE Certified

DATE Function

Date function extract date from timestamp. Argument passed to the function is timestamp and
declared data type of the function is DATE.

Syntax
DATE <left paren> <expression> <right paren>

Example
Select DATE (Timestamp ‘2002-06-30 12:12:12”) as DateOfJoining from Teacher

Result

DateOfJoining
2002-06-30

2002-06-30

2002-06-30

2002-06-30

TIME Function

Time functions extract time from timestamp. Argument passed to the function is timestamp and
Declared Data type of the function is time

Syntax
TIME <left paren> <expression> <right paren>

Example
Select TIME (Timestamp 2002-06-30 12:12:12’) as TimeOfJoining from Teacher
Result

TimeOfJoining
17:12:12
17:12:12
17:12:12
17:12:12

Daffodil DB 63

Daffodil DB SQL Reference Guide

J2EE Certified

String Functions

String Functions are special built-in functions for specific purposes. String Functions either take
zero, one or more String expressions as Input. These functions act as special operators in the
databases, identified by keywords in a database. Various Functions are performed by these special
operators, for e.g. Icase, ucase, right and left functions and so on.

Syntax

<String Functions> ::=
<ASCII value method>
| <left function>

| <right function>

| <space function>

| <replace function>

| <repeat function>

| <soundex function>

| <insert function>

| <difference function>
| <concat function>

| <locate function>

| <lcase function>

| <ucase function>

| <Itrim function>

| <rtrim function>

| <char function>

| <length function>

| <substring function>

| <EqualsCaseSensitive function>

Daffodil DB 64

Daffodil DB SQL Reference Guide

J2EE Certified

ASCII Value Function

The String function ASCII returns an Integer representing ASCII code value of the leftmost
character in a string.

Syntax
ASCII <left paren> <String Expression> <right paren>

Examples
Select ASCII (SubjectName) AS "ASCII VALUE" from Subject

The above query retrieves an ASCII code value of the leftmost character in the SubjectName from
a Subject table.

Result

ASCII VALUE
66

69

77

83

83

Daffodil DB 65

Daffodil DB SQL Reference Guide

J2EE Certified

Left Function

The Left Function returns count of the leftmost characters from a string.

Syntax
LEFT <left paren> <String Expression> <comma> <string length> <right paren>

<string length> ::= <unsigned integer>

First Argument String Expression is a String from which number of characters is to be retrieved.
Second Argument String Length is the number of the characters to be retrieved.

Examples

Select left (StudentName, 4) as "LEFT MOST" from Student

The above query retrieves 4 leftmost characters for each student name from the ‘Student’ table.

Result

LEFT MOST
Cath

John
Cath

John
Woll

Vali

Lieb
Will

Tove
Wink

Daffodil DB 66

Daffodil DB SQL Reference Guide

J2EE Certified

Right Function

The Right Function returns count of the rightmost characters from a string.

Syntax
RIGHT <left paren> <String Expression> <comma> <string length> <right paren>

<string length> ::= <unsigned integer>

First Argument String Expression is a String from which number of characters is to be retrieved.
Second Argument String Length is the number of the characters to be retrieved.

Examples

Select right (StudentName, 3) as "RIGHT MOST" from Student

The above query retrieves 3 rightmost characters for each student name from the Student table.

Result

RIGHT MOST

ine

ohn

the

ohn

oll

ine

big

ams

cra

eld

Daffodil DB 67

Daffodil DB SQL Reference Guide

J2EE Certified

Space Function

The String function Space returns a character string consisting of a number of specified spaces.

Syntax
SPACE <left paren> <string length> <right paren>

Examples
Select space (5) AS "SPACES" from Post
The above query retrieves the String containing 5 spaces from the Post table

Result

SPACES

Replace Function

The String function Replace, replaces all the occurrences of string2 in stringl with String3.

Syntax

REPLACE <left paren> <String Expression> <comma> <String Expression> <comma> <String
Expression> <right paren>

Second String Expression is a substring in the First String Expression to be replaced with the third
String Expression.

Examples
Select replace (TeacherName, Mr.”,’Shri’) AS REPLACEMENT from Teacher

The above query replaces all the occurrences of String ‘Mr.” with String ‘Shri’ in the
TeacherName Column of the Teacher Table.

Result

REPLACEMENT
Shri Agregado
Shri Brumfield
Ms. McKelvey
Shri Everett

Shri Verstrepen
Shri Haight
Ms. Hartenfeld
Shri Henry

Daffodil DB 68

Daffodil DB SQL Reference Guide

J2EE Certified

Repeat Function

The String function Repeat returns a character string formed by repeating the number of string
count times.

Syntax
REPEAT <left paren> <String Expression> <comma> <numeric expression> <right paren>

Examples
Select repeat (PostName, 2) AS REPEAT_TWO_TIMES from Post
The above query retrieves post names by repeating the string count two times.

Result

REPEAT_TWO_TIMES

PrincipalPrincipal
Vice Principal Vice Principal

TeacherTeacher

Soundex Function

The scalar function SOUNDEX returns a character string, which is data source-dependent,
representing sound of words in a string; it could be a four-digit SOUNDEX code, a phonetic
representation of each word, etc.

Syntax
SOUNDEX <left paren> <String Expression> <right paren>

Examples
Select soundex (StudentName) AS SOUNDEX_CODE from Student
The above query retrieves a four-digit code for each student name from the Student table.

Result

SOUNDEX CODE
C365
J500
C300
J500
W400
V450
L120
w452
T160
W521

Daffodil DB 69

Daffodil DB SQL Reference Guide

J2EE Certified

Insert Function
The string function INSERT returns a character string formed by deleting length of characters from
string1 beginning at start, and inserting string2 into stringl in the beginning.

Syntax

INSERT <left paren> <String Expression> <comma> <numeric expression>

<comma> <numeric expression> <comma> <String Expression> <right paren>

First String Expression Argument is a String in which another String needs to be inserted.
Start is the index from which Length characters need to be deleted.

Second String Expression is a String to be inserted at the index Start.

Examples

Select insert (TeacherName, 1, 3, 'Shri’) AS REPLACEMENT From Teacher

The above query replaces 3 characters starting at index 1 and replaces with it String ‘Shri’.

Result

REPLACEMENT

Shri Agregado

Shri Brumfield

Shri McKelvey

Shri Everett

Shri Verstrepen

Shri Haight

Shri Hartenfeld

Shri Henry

Daffodil DB 70

Daffodil DB SQL Reference Guide

J2EE Certified

Difference Function
The string function DIFFERENCE returns an Integer indicating the difference between values
returned by the function SOUNDEX for string1 and string?2.

Syntax
DIFFERENCE <left paren> <String Expression> <comma> <String Expression> <right paren>

Examples
Select difference (StudentName, John’) AS "DIFFERENCE” from Student

The above query retrieves difference between the values returned by the function SOUNDEX for
each student name and student address from the Student table.

Result

DIFFERENCE

0

4

Daffodil DB 71

Daffodil DB SQL Reference Guide

J2EE Certified

Concat Function

The string function CONCAT returns a Character string formed by appending string? to string1; if a
string is null, then the result is DBMS dependent.

The CONCAT scalar function is similar to the concatenation operator. However, the concatenation
operator allows easy concatenation of more than two character expressions, while the CONCAT
function requires nesting.

Syntax
CONCAT <left paren> <String Expression> <comma> <String Expression> <right paren>

First String Expression is a String in which another String needs to be concatenated.
Second String Expression is a String to be concatenated with the First String Expression.
Examples

Select concat (StudentName, Calera’) AS "NEW NAMES" from Student

The above query retrieves student names after appending ‘Calera’ with each student name from
the Student table.

Result

NEW NAMES

Catherine Calera

John Calera

Cathe Calera

John Calera

Woll Calera

Valine Calera

Liebig Calera

Williams Calera

Tovera Calera

WinkField Calera

Daffodil DB 72

Daffodil DB SQL Reference Guide

J2EE Certified

Locate Function

The string function LOCATE returns the location of the first occurrence of stringl in string 2,
searching from the beginning of string 2.

If start is specified, then search begins from the position start. 0 is returned if string2 does not contain
string]. If either string is null, LOCATE returns a null value.

Position 1 is the first character in string?2.

Syntax

LOCATE <left paren> <String Expression> <comma> <String Expression> [<comma> <numeric
expression> | <right paren>

First String Expression is the String in which another String is to be located.
Second String Expression is the String to be located in the First String Expression.
Examples

Select locate (StudentName,John’) AS "FIND JOHN" from Student

The above query retrieves location of ‘John’ from the Student table.

Result

FIND JOHN

0

1

Daffodil DB 73

Daffodil DB SQL Reference Guide

J2EE Certified

Lcase Function
The string function LCASE returns the result after converting all the characters in a string to
lowercase.

Syntax

LCASE <left paren> <String Expression> <right paren>

Examples

Select Icase (TeacherName) as "LOWER CASE NAMES OF TEACHERS" from Teacher
The above query retrieves the name of teachers in lowercase.

Result

LOWER CASE NAMES OF TEACHERS

mr. agregado

mr. brumfield

ms. mckelvey

mr. everett

mr. verstrepen

mr. haight

ms. hartenfeld

mr. henry

Daffodil DB 74

Daffodil DB SQL Reference Guide

J2EE Certified

Ucase Function

The string function UCASE returns the result after converting all the characters in a string to
uppercase

Syntax
UCASE <left paren> <String Expression> <right paren>

Examples
Select ucase (TeacherName) as "UPPER CASE NAMES OF TEACHERS" from Teacher
The above query retrieves the name of teachers in uppercase.

Result

UPPER CASE NAMES OF TEACHERS

MR. AGREGADO

MR. BRUMFIELD

MS. MCKELVEY

MR. EVERETT

MR. VERSTREPEN

MR. HAIGHT

MS. HARTENFELD

MR. HENRY

Daffodil DB 75

Daffodil DB SQL Reference Guide

J2EE Certified

Ltrim Function

The String function LTRIM removes all the characters of a string with leading blank spaces.

Syntax
LTRIM <left paren> <String Expression> <right paren>

Examples
Select Itrim (StudentName) AS "NAMES AFTER LEFT TRIMMING" from Student

The above query retrieves name of students after removing the leading blank spaces from Student
table.

Result

NAMES AFTER LEFT TRIMMING

Catherine

John

Cathe

John

Woll

Valine

Liebig

Williams

Tovera

WinkField

Daffodil DB 76

Daffodil DB SQL Reference Guide

J2EE Certified

Rtrim Function

The String function RTRIM retrieves characters of a string with no trailing blanks.

Syntax
RTRIM <left paren> <String Expression> <right paren>

Examples
Select Rtrim (StudentName) AS "NAMES AFTER RIGHT TRIMMING" from Student

The above query retrieves names of students after removing trailing blank spaces from the Student
table.

Result

NAMES AFTER RIGHT TRIMMING

Catherine

John

Cathe

John

Woll

Valine

Liebig

Williams

Tovera

WinkField

Daffodil DB 77

Daffodil DB SQL Reference Guide

J2EE Certified

Char Function

The scalar function CHAR returns a Character with ASCII value code, where code is between 0 and
255

Syntax

CHAR <left paren> <numeric expression> <right paren>
Examples

Select char (65) AS "CHAR VALUE" from Post

Result

CHAR VALUE
A

A

A

Length Function

The string function LENGTH returns the number of characters in a string, excluding trailing blanks.

Syntax
LENGTH <left paren> <String Expression> <right paren>

String Expression is a String for which length is to be calculated.

Examples

Select length (TeacherName) AS LENGTH from Teacher

The above query retrieves a number of characters in the teacher name column from Teacher table.

Result

LENGTH
12

13

12

11

14

Daffodil DB 78

Daffodil DB SQL Reference Guide

J2EE Certified

Substring Function
The String function SUBSTRING retrieves a character string formed by extracting length of
characters from a string; beginning from start.

Syntax

SUBSTRING <left paren> <string expressions> <comma> <numeric expression>
<comma><numeric expression> <right paren>

<string expressions> ::= Any String

First String Expression Argument is a String from which a substring is to be retrieved.

First Numeric Expression Argument is the start index from where a substring is to be retrieved.
Second Numeric Expression Argument retrieves the number of characters to be retrieved.
Examples

Select substring (TeacherName, 4, 2) AS SUB_STRING from Teacher

The above query retrieves a substring from the teacher name starting at an index of 4 of length =
6.

Result

SUB_STRING

A

B

™

T == <

Daffodil DB 79

Daffodil DB SQL Reference Guide

J2EE Certified

EqualsCaseSensitive Function

EqualsCaseSensitive retrieve true or false after checking the equality of two strings. It is a case
sensitive function. It retrieve false if alphabets of one string are in different case from other.

Syntax

EQUALSCASESENSITIVE <left paren> <string expressions> <comma> <string expressions>
<right paren>

String expressions are parameters of equalscasesensitive function.

Examples

Select EqualsCaseSensitive (TeacherName, Mr. Agregado’) AS STRING_EQUALITY from
Teacher

The above example retrieves a substring from the teacher name starting at an index of 4 of length
=0.

Result

STRING_EQUALITY

True

false

false

false

false

false

false

false

Daffodil DB 80

Daffodil DB SQL Reference Guide

J2EE Certified

Svystem Functions

System Functions are certain built-in functions, which are used to perform activities like they are
used to return current database name, current user name etc.

<System Functions>::=
<Current Database function>
| <user function>

| <ifnull function>

Current Database Function or CURRENT DATABASE

Current Database Function returns the name of current database in the SQL Session.

Syntax
DATABASE <left paren> <right paren>

Example
Select Database () as "DATABASE NAME” from Exam

Result

DATABASE NAME

school
school
school
school

User Function or CURRENT USER

The User function returns the name of a current user in the SQL Session.

Syntax
USER <left paren> <right paren>

Example
Select USER () from Exam
Result

User()

daffodil
daffodil
daffodil
daffodil

Daffodil DB 81

Daffodil DB SQL Reference Guide

J2EE Certified

IFNULL Function
The IFNULL function performs a special task of checking the ‘if” condition.

It checks for the null ness of the first expression. If value of the first expression is null then second
expression is returned, otherwise value of first expression is returned.

Syntax
IFNULL <left paren> <expression1> <comma> <expression2> <right paren>

Example
Select IFNULL (postname,'not found') as POST_NAMES from post
Result

POST_NAMES

Principal
VicePrincipal
Teacher

Special Functions

There is only one special function namely TOP function. This function performs special purpose
task. It is used to specify number of rows to be retrieved in a Result Set.

TOP Function

The TOP function enables us to control the number of rows to appear in the Result Set of a query
result. We can specify the count ‘n’ to instruct query engine to retrieve only the specified topmost
count of rows.

Syntax

TOP <left paren> <unsigned integer> <right paren>

Unsigned Integer

Unsigned Integer is any valid SQL integer, i.e. it should consist of digits (0-9).

This integer specifies the count of topmost rows to be retrieved in the Result Set. This integer can
not be negative.

Example

Select TOP (5) floor ((marks*100)/500) as Percentage, StudentID, SubjectID from Marksrecord
Result

Percentage StudentID SubjectID

19 1 1

17 1 2

19 1 3

15 1 4

10 1 5

The query stated above is another form of SELECT queries, where we have used TOP function to
list the top 5 students from the list. To display implementation of the mathematical expression in

Daffodil DB 82

Daffodil DB SQL Reference Guide

J2EE Certified

SELECT statement, we have calculated the percentage taking maximum marks as 500. Alsothe
column aliasing has been used in the query, where first column has been renamed to Percentage.

Aggregate Functions

Aggregate functions return a single result row based on groups of the rows, rather than on single
rows. Aggregate functions can appear in select lists and in ORDER BY and HAVING clauses.
They are commonly used with the GROUP BY clause in a SELECT statement, where Daffodil
DB divides the rows of a queried table or view into groups. In a query containing GROUP BY
clause, elements of the select list can be aggregate functions, GROUP BY expressions, constants,
or expressions involving one of these.

Aggregate functions are applied to each group of rows and return a single result row for each
group. In the absence of GROUP BY clause, Aggregate functions are applied in the select list to
all the rows in the queried table or view. We use aggregate functions in the HAVING clause to
eliminate groups from the output based on the results of the aggregate functions, rather than on the
values of the individual rows of the queried table or view.

Aggregate functions are set of functions that apply over a set of column values and return a scalar
value. Daffodil DB provides a number of Aggregate functions with each function operating over a
set of column values and resulting in a single value.

Syntax

<set function specification> ::=

COUNT <left paren> <asterisk> <right paren>
| <general set function>

<general set function> ::=

<set function type> <left paren> < Aggregate Expression> <right paren>
<set function type> ::=

AVG IMAX I MIN | SUM

| COUNT

< Aggregate Expression > ::=

<Numeric Expression>

<Constant>

| <Column Reference>

Count

COUNT is an Aggregate function used to count number of records corresponding to a column or
record. It takes a Numeric Expression or ‘asterisk’ (*) as its argument.Example

Select COUNT (*) from post.
Result

COUNT(*)
3

Daffodil DB 83

Daffodil DB SQL Reference Guide

J2EE Certified

Result of the query mentioned above is simply count of the record in the Table Post.

Avg

AVG is an Aggregate function used to calculate average of the values corresponding to a column
specified as its argument.

SELECT AVG (ABS (marks)) AS AVERAGE FROM MarksRecord GROUP BY ExamID
Result

AVERAGE
79.91666..
Sum

SUM is an Aggregate function used to calculate sum of all the values corresponding to a column
specified as its argument.

Select SUM (marks*2) from MarksRecord where StudentID =5
Result

SUM (marks*2)
956

In the above example, result will be sum of all the marks multiplied by 2 corresponding to the
student whose Studentld is 5.
Max/Min

MAX is an Aggregate function that finds the maximum value among all the available values
corresponding to a column specified as its argument. On the contrary, MIN is an aggregate
function that selects minimum value among all the available values corresponding to a column
specified as its argument.

All aggregate functions except COUNT (*) and GROUPING ignore nulls. COUNT never returns
Null, returns either a number or zero. For all the remaining aggregate functions, if data set
contains no rows, or contains only rows with nulls as arguments to the aggregate function, then the
function returns NULL. Nesting of Aggregate functions is also possible. For example, the
following example calculates the average of the maximum marks of all the Exams held.

Select MAX (marks) from MarksRecord where ExamID <> 5
Result

MA X (marks)
99

In the above example, result will be Maximum marks in all the exams except that for which
ExamlID is 5.

Daffodil DB 84

Daffodil DB SQL Reference Guide

J2EE Certified

Expression

An expression is a combination of one or more values, operators, and SQL functions that evaluate
to a value. An expression generally assumes the data type of its components. An Expression is a
valid SQL expression (according to SQL-99 Standards) that can comprise of a Numeric
Expression, Boolean Expression, String Expression or Expression Primary.

Syntax

<Expression> ::=
<Numeric Expression>
<Boolean Expression>
| <String Expression>

| <Expression Primary>
Numeric Expression

Numeric Expression is a type of expression that can be used to perform numeric operations.

Boolean Expression

Boolean Expression is a type of expression that returns a Boolean value. Boolean Precedence is to
be applied properly while solving any Boolean Expression.

String Expression

String Expression represents a set of characters. Two String Expressions can be joined together
through concatenation operator.

Expression Primary

Expression Primary can either be a SubQuery, Constant, Column Reference, Multi-Valued
Expression or a Parenthesized Expression.

Expression Precedence

Precedence of operations from highest to lowest is:

0,7,

unary + and -

*./, Il (concatenation)
binary + and -

NOT

AND

OR

?: (Conditional)

You can explicitly specify precedence by placing expressions within parentheses. An expression
within parentheses is evaluated before any operations outside the parentheses are applied to it.

Daffodil DB 85

Daffodil DB SQL Reference Guide

J2EE Certified

Example
(3+4)*9

In the above example although precedence of * is greater than +, but since parenthesis has highest
precedence, first of all expression inside the parenthesis will be evaluated and then the result will
be evaluated with *.

On the other hand in
3+4%9

First * will be evaluated and thereafter the result will be evaluated using + operator.

Numeric Expression

Numeric Expression is any kind of valid expression that contains plus sign, minus sign, asterisk
and/or solidus in between two Numeric Expressions or it could be a simple factor. Numeric
Expression is used to perform arithmetic operations. A valid plus or a minus sign can also be
applied in a valid Numeric Expression. All the Numeric Expression will be evaluated by applying
the proper Expression Precedence as mentioned above.

Syntax

<Numeric Expression> ::=

<term>

| <Numeric Expression> <minus sign> <term>
| <Numeric Expression> <plus sign> <term>
<term> ::=

<factor>

| <term> <asterisk> <factor>

| <term> <solidus> <factor>

<factor> ::=

[<sign>] <Numeric primary>

<Numeric Primary> ::=

<Expression Primary>

<Numeric Functions>

| <Date Time Functions>

<sign> ::=<plus sign> | <minus sign>
<plus sign> 1=+

<minus sign> ::= -

<asterisk> 1= *

<solidus> ::=/

Daffodil DB 86

Daffodil DB SQL Reference Guide

J2EE Certified

Numeric Primary

A Numeric Primary can be a valid Expression Primary, valid Numeric Function or a valid Date
Time Functions.

Term

A term in turn can be a valid factor or valid term asterisk / solidus factor.

Factor

A Factor can be a valid Expression Primary with or without sign.

Numeric Functions

A Numeric function is a set of Numeric functions like SIN, COS, TAN, TRIM etc.
Date Time Functions

These include several Date Time Functions like DAYNAME, DAYOFWEEK etc.
Sign

A sign could be either plus sign or minus sign.
Examples
(a*b+c/d)+2is avalid Numeric expression.

Here the expression inside the parenthesis will be evaluated first. Further the Expression inside the
parenthesis will be treated itself as an Expression and Expression precedence will be properly
applied over it. Further the result will be solved using the + operator.

In case of Numeric Expression, Multi-valued Expressions are not supported.

Boolean Expression

Boolean Expressions are any kind of valid expression that contains AND / OR in between two
Boolean Expression, Boolean Primary or simply a Truth value. Boolean Expressions are used to
perform Boolean operations that results in TRUE or FALSE value. Boolean expressions are
allowed in a number of places, most notably in WHERE clauses, but also in check constraints and
VALUES expressions. A Boolean expression can include a Boolean operator or operators. These
are listed.

Syntax

<Boolean Expression> ::=

<boolean term>

| <boolean expression> OR <boolean term>
<boolean term> ::=

<boolean factor>

I<boolean term> AND <boolean factor>
<boolean factor> ::=

[NOT] <boolean test>

Daffodil DB 87

Daffodil DB SQL Reference Guide

J2EE Cetrtified
<boolean test> ::=

<boolean primary> [IS [NOT] <truth value>]
<truth value> ::=

TRUE | FALSE

<boolean primary> ::=

<parenthesized Boolean expression>
<Expression primary>

| <predicate>

<parenthesized Boolean expression> ::=

<left paren> <Boolean expression> <right paren>

Boolean Expression

A Boolean Expression can be a valid Boolean Primary, truth value or a valid Boolean Expression
AND/OR Boolean term.

Boolean Term

A Boolean term in turn can be a valid Boolean factor or Boolean term AND Boolean factor.
Boolean factor

Boolean factor further could be any Boolean Test with or without NOT before it.

Boolean Primary

Boolean Primary further can be represented using parenthesized Boolean Expression, Expression
Primary or a Predicate. Truth Value may be TRUE or FALSE.

Example 1
Select * from post where postID < 10 AND postID > 3 OR postName <> Principal’

Here in the above example postID < 10 AND postID > 3 OR postName <> ‘Principal’ is an
example of valid Boolean Expression.

Result

PostID | PostName PostRank
2 Vice Principal | 2

3 Teacher 3
Example 2

Select * from post where TRUE

Here in the above example simply “TRUE’ is also an example of valid Boolean Expression.

Daffodil DB 88

Daffodil DB SQL Reference Guide

J2EE Certified

Result

PostID | PostName PostRank
1 Principal 1

2 Vice Principal | 2

3 Teacher 3

String Expression

String Expression is a valid Character Value Expression that further defines characters factor
and/or character value expression concatenation operator character factor. Character Primary
further could be any Expression Primary or a string value function. Concatenation operator is
represented by ‘I’ symbol and is used to join two character value Expression.

Syntax

<string value expression> ::=

<character value expression>

<character value expression> ::= <concatenation>

| <character factor>

<concatenation> ::= <character value expression> <concatenation operator> <character factor>
<character factor> ::= <character primary>

<character primary> ::= <Expression Primary> | <StringFunctions>

Character Value Expression

Character Value Expression can simply be a Character Factor or it could be a Concatenation.
Character Factor

Character Factor in turn leads to a character Primary.

Concatenation

Concatenation is a join of character value expression and character factor through a concatenation operator.

Character Primary
Character Primary can be any valid Expression Primary or a string value function.

Daffodil DB &9

Daffodil DB SQL Reference Guide

J2EE Certified

Example 1

Select ‘Mr. ’ |l postName as name from Post
is an Example of String Expression.

Result

name

Mr. Principal

Mr. Vice Principal

Mr. Teacher

Example 2
Select DAYNAME (Date 2002-12-24") as "Day Name" from Post

Result

DAYNAME

Tuesday

The above result shows one of the 3 rows.

Daffodil DB 90

Daffodil DB SQL Reference Guide

J2EE Certified

Expression Primary

An Expression Primary can be a SubQuery, Constant, Column Reference, Multi-Valued
Expression or a Parenthesized Expression.

Syntax

<Expression primary> ::=
<Subquery>

<Column Reference>
<Constant>

<Multi-Valued Expression>

<Parenthesized Expression>

SubQuery

A SubQuery is nothing but a Query itself. It can be one of the three types:

e Table SubQuery
e Row SubQuery
e Scalar SubQuery
Degree
Degree refers to the number of records that are resulted from a Query.
Cardinality
Cardinality refers to the number of columns that are selected in a Query.

Table SubQuery
Table SubQuery is the one for which both degree and cardinality can be greater than or equal to 0

Row SubQuery
Row SubQuery is the one for which degree is 1 while cardinality can be greater than or equal to 0.
Scalar SubQuery

Scalar SubQuery is the one for which both degree and cardinality are 1.

Example 1

Select schoolName from School where Exists (Select schoolID, schoolName from Classes where
schoolID > 0)

In the above query, the inner query will be an example of Table SubQuery if it returns more than a
single record for the studentID.

Result

schoolName

Arthur Morgan School

Daffodil DB 91

Daffodil DB SQL Reference Guide

J2EE Certified

Example 2

Select eMailAddress from School where Exists (Select Distinct schoolID, schoolName from Classes where
schoolID > 0)

In the above query, inner query will be an example of Row SubQuerys, if it returns a single record.

Result

EmailAddress

info@arthuormorganschool.org

Example 3

Select PhoneNumber from School where Exists (Select Distinct schoolID from Classes where schoolID > 0)

In the above query, inner query will be an example of Scalar SubQuerys, if it returns a single record
for the studentID.

Result

PhoneNumber

1-828-875-4262

Column Reference

Column Reference can be a single column or a group of column separated by period. It can be a
valid identifier or period separated identifier.

Syntax
<column reference> ::= <identifier> [{ <period> <identifier> }...]
<identifier> ::= <regular identifier> | <delimited identifier>

Regular identifier

It is an identifier conforming to the rules of the Identifier specified in SQL-99.
Delimited identifier

Delimited identifier is an identifier enclosed within double quotes. Any word, including keywords,
can be a delimited identifier.

Example 1
Select postID from post
In the above example postID is an example of ColumnReference

Result

PostID
1
2
3

Daffodil DB 92

Daffodil DB SQL Reference Guide

J2EE Certified

Example 2
Select a.postID from post a

In the above example a.postld is also an example of Column Reference.
“dshjh"&*%”or “SELECT” is an example of valid delimited identifier.
Result

PostID

1

2
3

Constant

A constant is any valid SQL literal, whose value in the current database instance does not change
with time.

Syntax

<constant> ::=

<literal>

<exact numeric literal>
<Boolean literal>

<Boolean literal> ::=TRUE
FALSE

<exact numeric literal> ::= <digit>...
<period> <digit> ...
<digit>... <period> <digit>...
<digit>... E <digit>...
Literal

A literal could be any valid character string literal enclosed in “’, or any date literal like DATE
2002-12-24’, or it could also be any valid TimeStamp literal like TIMESTAMP 2002-12-24
09:34:23".

Boolean Literal
Boolean Literal is a single constant value specifying TRUE or FALSE.

Exact Numeric Literal

An Exact Numeric Literal could be a digit like 0, 22, 333 or any period digit like .2, .33 or <digit
period digit> like 22.22.

Daffodil DB 93

Daffodil DB SQL Reference Guide

J2EE Certified

Multi-Valued Expression

The term Multi-Valued Expression refers to the expression that has more than one valid
expression separated by comma.

Syntax
<multi-valued expression> ::=
<left paren> <Expression> [{<comma> <Expression>}... |

A Multi-Valued Expression is group of Expressions separated by comma and enclosed in
parenthesis. The Multi-valued expression becomes more significant if we have to compare
different expressions. Suppose we have to compare studentName with ‘Catherine’ and studentID
with 3 in that case we can use either

studentName = ‘Catherine’ and studentID = 3

And using Multi-Valued expression we can also write the above condition as follows
(studentName, studentID) = (‘Catherine, 3’)

Examples

Select * from student where (studentID, StudentName) = (2,'John")

Here in the above query

(studentID, StudentName) = (2,'John")

is an example of Multi-Valued expression.

Result
StudentID StudentName RollNumber Gender StudentAddress PhoneNumber ClassID
2 John 1001 M Oroville City Palace (408)615-7297 1

1735 Montgomery Street

Oro...

Parenthesized Expression

A Parenthesized Expression is simply an expression enclosed with left and right parenthesis.

Syntax

<Parenthesized Expression> ::= <left paren> <Expression> <right paren>

Example

(a*b+c/d) is a valid parenthesized expression.

Daffodil DB 94

Daffodil DB SQL Reference Guide

J2EE Certified

Predicate

A predicate is an SQL expression that is used in the evaluation of a search condition that is either
TRUE or FALSE. TRUE indicates that the expression is correct. FALSE indicates that the
expression is incorrect. All SQL values used in a predicate must be of a compatible data type
(family) for comparison.

Syntax:

<predicate> ::=

<comparison predicate>

| <between predicate>

| <in predicate>

| <like predicate>

| <null predicate>

| <quantified comparison predicate>
| <exists predicate>

Predicates is the term that collectively refers to the one amongst COMPARISON predicate,
BETWEEN predicate, IN predicate, LIKE predicate, NULL predicate, QUANTIFIED
COMPARISON predicate, EXISTS predicate.

Multi-Valued Expression is a unique feature provided by Daffodil DB. In Multi-Valued
Expression, we can combine multiple expressions separated by a comma. Use of a Multi-Valued
Expression in case of predicates allows us to combine two different conditions joined with ‘AND”’,
that is to be applied on same operator. The term “Multi-Valued” in Multi-Valued predicates refers
that an expression involved in the predicate may be replaced with more than one expression,
provided the Cardinality does not mismatch. For example if we have two conditions like

‘StudentID =3 AND SchoollD =2’

then using Multi-Valued Expression, we can combine the two separate conditions as follows:
(StudentID, SchoollD) = (3, 2)

Examples

Let us take the following examples into consideration that are using those predicates whose results
(TRUE, FALSE) are based on the values of the column.

Condition SchoollD = 1 and StudentID <=2 evaluates to TRUE if SchoollD is 1 and StudentID is
less than or equal to 2.

Select School.PhoneNumber, School. EmailAddress, Student.studentID from school, student where
SchoolID = 1 and StudentID <= 2.

The evaluation of the above query will return TRUE for all the records for which SchoollD is 1
and Students belonging to that school have StudentID less than or equal to 2.

Daffodil DB 95

Daffodil DB SQL Reference Guide

J2EE Certified

Result

PhoneNumber EmailAddress StudentID

1-828-675-4262 | info@arthurmorganschool.org 1
1-828-675-4262 | info@arthurmorganschool.org 2

Comparison Predicate

The COMPARISON predicate compares two values and returns TRUE or FALSE depending on
whether the two values have been compared successfully or not.

Syntax:

<comparison predicate> ::=

<Expression1> <comp op> <Expression2>
<Expression1> ::= <Expression>

<Expression2> ::= <Expression>

<comp op> ::=

<equals operator>

| <not equals operator>

| <less than operator>

| <greater than operator>

| <less than or equals operator>

| <greater than or equals operator>

Expression

An expression can be one of the following:

LITERAL - quoted string, numeric value, datetime value.
FUNCTION CALL - reference to a built-in SQL function.
SYSTEM VALUE - Current date, Current user.
NUMERIC, BOOLEAN or STRING Expression - Combining Sub Expressions using Operators.

Expressionl and Expression2 further define an Expression. Talking Multi-Valued COMPARISON
PREDICATE means an expression of the following type.

(ExpressionAl. . . ExpressionAN) <comp op> (ExpressionB1. . . ExpressionBN)

Here ExpressionAl will be compared with ExpressionB1, ExpressionA2 will be compared with
ExpressionB2,. . . and so on ExpressionAN will be compared with ExpressionBN.

Daffodil DB 96

Daffodil DB SQL Reference Guide

J2EE Certified

Comparison Operators

The operators referred in the syntax are describes as follows:

Comparison Symbol Description Result Description

Symbol

= Equal to Returns TRUE, if both the values are same.

<> Not Equal to Returns TRUE, if first value is not equal to the
second value

< Less Than Returns TRUE, if first value is less than the second
value.

> Greater Than Returns TRUE, if first value is greater than the
second value.

<= Less Than or Equal to Returns TRUE, if first value is less than or equal to
the second value

>= Greater than or Equal to Returns TRUE, if first value is greater than or equal
to the second value.

Example

Let us take the following examples that are using comparison predicates where results (TRUE,

FALSE) are based on the values of the column,

SchoolID = 1 and StudentID <= 2 evaluates to TRUE if SchoolID is 1 and StudentID is less than

or equal to 2.

Select School.PhoneNumber, Student.StudentID, Student.StudentName, ClassID from School,
Student where SchoollD = 1 and StudentID <=2

will return TRUE for all the records for which SchoollD is 1 and StudentID of the Students
belonging to that school have value less than or equal to 2.

Daffodil DB

97

Daffodil DB SQL Reference Guide

J2EE Certified

Result

PhoneNumber | StudentID | StudentName | ClassID

1-828-675- 1 Catherine 1
4262
1-828-675- 2 John 1
4262

Select School.EmailAddress, Student.StudentID, Student.StudentName from School, Student where
(SchoollD, StudentID) = (1, 5)

will return TRUE for all the records for which SchoolID is 1 and StudentID is equal to 5.

Result
EMailAddress StudentID | StudentName
info@arthurmorganschool.org | 5 Wool

Between Predicate

BETWEEN Predicate is used to find all the values that lie between two values. The
BETWEEN predicate determines if a value is between a range of values.

For example, Expression] BETWEEN Expression2 AND Expression3 is equivalent to the
following search condition.

Expressionl >= Expression 2 AND Expression 1 <= Expression3

Syntax

<between predicate> ::= <Expressionl> [NOT | BETWEEN [ASYMMETRIC | SYMMETRIC |
<Expression2> AND <Expression3>

<Expression1> ::= <Expression>

<Expression2> ::= <Expression>

<Expression3> ::= <Expression>

Expression

As explained above, the expression can be any one of the following:

LITERAL - quoted string, numeric value, date-time value

FUNCTION CALL - Reference to built-in SQL function

SYSTEM VALUE - Current date, Current User

NUMERIC, BOOLEAN or STRING Expression - Combining Sub Expressions using Operators.

Daffodil DB 98

Daffodil DB SQL Reference Guide

J2EE Certified

Between

BETWEEN operates on three expressions. The expressionl’s value is checked for comparison in
the range of expression2 and expression3.

Symmetric

When SYMMETRIC is specified, then the boundary values of the range of expression2 and
expression3 are not taken into account when the expressionl’s value is checked for any match in
the specified range.

Asymmetric

When ASYMMETRIC is specified, then the boundary values of the range of expression2 and
expression3 are also taken into account when the expressionl1’s value is checked for any match in
the specified range.

For both BETWEEN and NOT BETWEEN, ASYMMETRIC is default.
Not Between

Not Between operates again on the three expressions. But, now the expressionl’s value is
checked for comparison outside the range of the expression2 and expression3.
Examples

Lets take the following examples that are using BETWEEN predicates where results depends upon
the given range.

Select * from Marksrecord where ExamID BETWEEN 0 AND 15 and StudentID NOT
BETWEEN SYMMETRIC 1 AND 11

The above query will select all the records for which ExamID falls between O and 15 and for
which StudentID does not lie between 1 and 11.

Marks | StudentID | SubjectID | ExamID
98 1 1 1
87 1 2 1
99 1 3 1
78 1 4 1
52 1 5 1
77 1 6 1

Select * from MarksRecord where ExamID BETWEEN ASYMMETRIC 1 AND 15 and
StudentID NOT BETWEEN SYMMETRIC 1 AND 11

The above query will select all the records for which ExamlID falls between 1 and 15, with 1 and
15 included and for which StudentID does not lies between 1 and 11, with 1 and 11 excluded.

Daffodil DB 99

Daffodil DB SQL Reference Guide

J2EE Certified

Marks | StudentID | SubjectID | ExamID
98 1 1 1

87 1 2 1

99 1 3 1

78 1 4 1

52 1 5 1

77 1 6 1

Like Predicate

In order to search or match any string pattern, LIKE predicate is used. The LIKE predicate finds
a string to determine if the string has that particular pattern. The pattern is a string with a
combination of the following special characters: underscore character ‘_’ and percent sign, ‘%’.

Syntax

<like predicate> ::=

<character match value> [NOT] LIKE <character pattern>
<character match value> ::= <string expression>
<character pattern> ::= <string expression>

Character Match Value

Character Match Value is a string that will be searched to determine if the specified Character
Pattern can be found.

Character Pattern

Character pattern is the defined pattern, which actually serves as the criteria against which the
search is made.

Like | Not Like

LIKE and NOT LIKE are the key words to execute search. Operate on Character Match Value
and Character Pattern. LIKE searches for the records matching the specified pattern where as

NOT LIKE searches for the all the records not matching the specified pattern. LIKE predicate
is case sensitive.

Daffodil DB 100

Daffodil DB SQL Reference Guide

J2EE Certified

Example 1
Select studentID from Student where studentName LIKE * o_n’

On executing the above query, all studentIDs will be selected from Students where second
character in the name is ‘0’ and the fourth character is ‘n’ and total length of the string will be 4.
(like ‘John’)

Result

StudentID

2

4

Example 2
Select studentName from student where studentName like '%a%e'

On executing the above query, all studentNames will be selected from Students that contain ‘a’
and ends with ‘e’ like ‘Catherine’, ‘Cathe’, and ‘Valine’.

Result

StudentName

Catherine
Cathe
Valine

Exists Predicate

This quantified operator verifies the existence of rows. The Boolean result of an EXISTS the
number of rows returned by the SubQuery determines predicate.

For EXISTS, the Boolean result is TRUE if SubQuery returns at least one row and FALSE if
SubQuery does not return any row.

Syntax

<exists predicate> ::= EXISTS <table subquery>

<table subquery> ::= <subquery>

<subquery> ::= <left paren> <query expression> <right paren>

Here EXISTS is a keyword that checks the existence of records in the query referred to by <table
subquery>.

Table SubQuery
Table SubQuery is a SubQuery listed in the Parent Query and succeeds the keyword EXISTS.

EXISTS

As explained above, EXISTS returns TRUE if the SubQuery returns at least one row, otherwise
FALSE is returned.

Daffodil DB 101

Daffodil DB SQL Reference Guide

J2EE Certified

Examples

Select * from Marksrecord where EXISTS (select examID from Exam where examID = 3)

In the above query, if the result of the inner SubQuery comes out with the number of records more
than O then all EXISTS Predicate will return true and all records of the Marksrecord table will be

displayed.

Result

Marks | StudentID SubjectID ExamID
98 1 1 1

87 1 2 1

99 1 3 1

78 1 4 1

52 1 5 1

In Predicate

You can use IN predicate to return a value list or a SubQuery. The IN predicate determines if a
value is TRUE for a list of values. The NOT IN predicate also follows the same format as the IN
predicate.

Syntax

<in predicate> ::= <Expression1> [NOT] IN <in predicate value>
<Expression1> ::= <Expression><in predicate value> ::=

<table subquery>

| <left paren> <in value list> <right paren><table subquery> ::= <subquery>
<in value list> ::= <expression>[{ <comma> <expression> }...]

Expression

As explained before, the expression can be any one of the following:
LITERAL - quoted string, numeric value, date-time value.

FUNCTION CALL - reference to built-in SQL function.

SYSTEM VALUE - Current date, Current user

NUMERIC, BOOLEAN or STRING Expression - Combining Sub Expressions using Operators.

Table SubQuery
Table SubQuery is the SubQuery listed in the Parent Query and succeeds the IN predicate.

Daffodil DB 102

Daffodil DB SQL Reference Guide

J2EE Certified

IN

IN predicate specifies some particular values instead of a broad range (as with EXISTS
predicate), where value of expressionl has to be matched.

NOTIN

On using NOT IN, the expressionl value is searched for a value not in the particularly mentioned
values by the predicate.

Example 1

Select * from Teacher where postID IN (2,4,5,6,8,9)

Or

Select * from Teacher where postID IN (select postID from Post where postRank = 2°)

In the above query, the IN predicate returns TRUE for the record for which postID satisfies with
any of the following values 2,4,5,6,8,9. Now since only 2 matches with the postID, record
corresponding to postID = ‘2’ will get selected from the Teacher.

Results
EmployeelD TeacherName | DateofJoining | DateOfBirth | Salary | DepartName | PostID | Schoolld
2 Mr. Brumfield | 1997-07-01 1966-11-27 | 8500 | Science 2 1
Example 2

Select TeacherName, EmployeelD, DateOfJoining from Teacher where (Salary, TeacherName) IN
(select Salary, TeacherName from Teacher where Salary > 7000 AND Salary < 10000)

The above query finds a list of names, id and date of joining of teachers in the Teacher table and
then selects all teacher names whose Salary is between 7000 and 10000 from the table.

Result

TeacherName | EmployeelD | DateofJoining

Mr. 2 1966-07-27

Brumfield

Null Predicate

The NULL predicate determines if a column in a selected row contains the SQL value:

NULL.

If column value is NULL, then Daffodil DB returns TRUE. Following is the syntax for NULL
predicate.

Daffodil DB 103

Daffodil DB SQL Reference Guide

J2EE Certified

Syntax
<null predicate> ::=

<Expression> IS [NOT | NULL
NULL

Null predicate Expression IS NULL will return TRUE only if value of the expression returns
NULL.

NOT NULL

Null predicate Expression IS NOT NULL will return TRUE only if value of the expression
returns NOT NULL.

Example
Select * from ClassProperties where LecturerDescription IS NOT NULL.

Here, the following records will be displayed where the LecturerDescription does not contain

NULL.

Result

ClassProperties | LecturerDescription | SubjectID | ClassID | TeacherID
1 Prose 2 3 1

2 Prose 2 2 6

3 Prose 2 2 6

4 Botany 1 1 8

5 Zoology 1 2 8

Quantified Comparison Predicate

In QUANTIFIED COMPARISON predicate, the result depends upon another keyword that
defines number of records returned by the right hand side of the operator and the value on the left
hand side of it.

Syntax

<quantified comparison predicate> ::=

<Expression> <comp op> <quantifier> <table subquery>
<quantifier> ::= ALL | SOME | ANY

Table SubQuery

Table SubQuery is a SubQuery listed in the Parent Query and succeeds the <quantifier> (ALL,
SOME, ANY).

Daffodil DB 104

Daffodil DB SQL Reference Guide

J2EE Certified

Quantifiers
ALL

In case of ALL quantifier, the Quantified comparison predicate will return TRUE if and only if all
the values of the table SubQuery satisfies the Expression.

SOME

In case of SOME quantifier, the Quantified comparison predicate will return TRUE if some of the
values of the table SubQuery satisfies the Expression.

ANY

In case of ANY quantifier, the Quantified comparison predicate will return TRUE if and only if
any of the value of the table SubQuery satisfies the Expression.

Example 1

Select * from ClassProperties where subjectID > ALL (select __rowld from Subject where
subjectName <> ‘Computers’)

All the records from ClassProperties will be selected for which subjectID is greater than every
__rowld selected by a SubQuery.

Result

ClassProperties | LecturerDescription | SubjectID | ClassID | TeacherID

20 Fundamentals 6 3 5

21 Memory 6 2 5

22 Basic 6 1 5

Daffodil DB 105

Daffodil DB SQL Reference Guide

J2EE Certified

Example 2

Select * from ClassProperties where subjectID > SOME (select __rowld from Subject where
subjectName <> Computers’)

All the records from ClassProperties will be selected for which Subjectld is Greater than some of
the subjectID selected by the SubQuery.

Result

ClassProperties | LecturerDescription | SubjectID | ClassID | TeacherID
1 Prose 2 3 1

2 Prose 2 2 6

3 Prose 2 2 6

4 Botany 1 1 8

5 Zoology 1 2 8

The above table shows the first five results that satisfy the query.
Example 3

Select * from ClassProperties where = owed™ ted < ANY (select __rowld from Subject where
subjectName <> ‘Computers’)

All the records from ClassProperties will be selected for which Subjectld is greater than any
* owed selected by a SubQuery.

Result

ClassProperties | LecturerDescription | SubjectID | ClassID | TeacherID
1 Prose 2 3 1

2 Prose 2 6

3 Prose 2 2 6

4 Botany 1 1 8

5 Zoology 1 2 8

Above result shows first five records, which satisfy the given query.

Daffodil DB 106

Daffodil DB SQL Reference Guide

J2EE Certified

Contains Predicat*

CONTAINS predicate is used to search columns containing character-based data types. This
clause can search single word and phrases, words in close proximity to each other, and by-
inflexion form of verbs and nouns.

Syntax

<contains clause> ::=

CONTAINS <left paren>

<columnorindexname> <comma> <search expression>
<right paren>

<search expression> ::=

<search term>

| <search expression> <vertical bar> <search term>
<search term> ::=

<search factor>

| <search term> <ampersand> <search factor>
<search factor> ::=

[NOT] <search primary>

<search primary> ::=

<text literal>

| <paren search expression>

<paren search expression> ::=

<left paren> <search expression> <right paren>
<text literal> ::=

<word>

| <phrase>

columnorindexname - is the name of a specific column or name of a full-text index. Name of the
index is used when index is created on more than one column.

search expression — is the search criterion containing words, phrases and logical NOT, AND, OR
operators.

word - is a string of characters without spaces.

phrase - is one or more words with spaces between each word.

Full-text index can be created by the following syntax:
CREATE FULLTEXT INDEX <full-text index name> ON <table name><on column>

<on column> ::= <left paren> <column name list> <right paren>

* Features that are not supported in One$DB
Daffodil DB 107

rajat.chugh
* Features that are not supported in One$DB

Daffodil DB SQL Reference Guide

J2EE Certified

full-text index name — user defined full text index name.
table name — name of the table, which is required to be full text enabled.
column name list — name of the column(s) on which full text index is to be created.

Example

The following statement creates a full text index on StudentAddress column of Student table. The
data type of address column is VARCHAR; hence, the full-text index can be created on
StudentAddress column.

Create fulltext index school_fulltext on student (StudentAddress)
The full-text search can be applied on the full-text enabled column i.e. StudentAddress, in the
following ways:

Example 1. The following query retrieves names of the students living in New York, from the
Student table.

SELECT StudentName FROM student where contains (StudentAddress,"NY")
Result

StudentName
Cathe
Tovera

Example 2. The following query retrieves names of the students from the Student table having
Palace or Park in their address field.

SELECT StudentName FROM student where contains (StudentAddress,"Palace"” | "Park")

Result
StudentID StudentName
2 John
3 Cathe
8 Williams

Example 3. The following query retrieves names of the students from the Student table living near
Airport in Columbia.

SELECT StudentName FROM student where contains (StudentAddress," AirPort" | "Columbia")
Result

StudentName
Liebig

|* Features that are not supported in One$DB
Daffodil DB 108

rajat.chugh
* Features that are not supported in One$DB

Daffodil DB SQL Reference Guide

J2EE Certified

Example 4. The following query retrieves names of the students from the Student table not living
in New York and NewZelands.

SELECT studentID, StudentName FROM student where contains (StudentAddress, Not ("NJ" |

"NY")
Result

StudentID StudentName

1 Catherine

2 John

4 John

5 Woll

7 Liebig

8 Williams

10 WinkField

* Features that are not supported in One$DB
Daffodil DB 109

rajat.chugh
* Features that are not supported in One$DB

Daffodil DB SQL Reference Guide

J2EE Certified

Data Definition Language

CREATE Database

Use CREATE DATABASE to create a database.
Syntax

CREATE DATABASE <database name> [FILESIZE <equals operator> <large object length>]
[FILEGROWTH <equals operator> <unsigned integer>]

[UNICODE SUPPORT <truth value> |

[USER <user name> PASSWORD <password name>]

<large object length> ::= <unsigned integer> | <unsigned integer> <multiplier>

| <large object length token>

<truth value>::= True | False

database name
It is the name of the database being created.

FILESIZE <equals operator> <large object length>

This specifies the size of database, in case a new database is created. Default value for this
parameter is Sm.

FILEGROWTH <equals operator> <unsigned integer>

This is an integer, which specifies the factor by which database size has to be increased after the
space allocated to the database has been taken up or create subsequent file. This is expressed in
terms of percentage of the current size of the database. Default value for this parameter is 20%.
Valid values for this parameter are 10 to 100.

UNICODE SUPPORT <truth value>

It is used for Multilanguage support.

USER <user name>

The value for this parameter specifies the name of the user creating the database. Default value for
this parameter is the current user.

PASSWORD <password name>

The value for this parameter specifies password of the user creating database. Default value for
this parameter is password of the current user.

Daffodil DB 110

Daffodil DB SQL Reference Guide

J2EE Certified

Examples

CREATE DATABASE ANSII FILESIZE = 6m FILEGROWTH =12 UNICODE SUPPORT true
USER ANSII PASSWORD ANSII

This will create a database called ANSII for USER ANSII with the FILESIZE = 6m,
FILEGROWTH = 12 and UNICODESUPPORT = TRUE.

Note:-
e [F USERNAME is not specified, then database is automatically created for the current
user.
e |F FILESIZE is not specified, then Default value of FILESIZE is taken as Sm for the
database.

e [F FILEGROWTH is not specified, then Default value of FILEGROWTH is taken as 20%
for the database.

DROP Database

To drop a database, use the SQL. command DROP DATABASE.

Syntax

DROP DATABASE <database name> USER <user name> PASSWORD <password name>
Database name

It is the name of the database, which needs to be dropped. For <database name>, any existing
database name can be used.

USER <user name >

The value for this parameter specifies the name of the user connecting to the database. There is no
default value for this parameter.

PASSWORD <password name>

The value for this parameter specifies user password for connecting to the database. There is no
default value for this parameter.

Examples
DROP DATABASE ANSII USER ANSII PASSWORD ANSII
This will drop the database called ANSII for USER ANSII.

Note: - No default value for USERNAME. If USERNAME is not specified, then an SQL Exception
will occur.

Daffodil DB 111

Daffodil DB SQL Reference Guide

J2EE Certified

Create Table Statement
A CREATE TABLE statement creates a table.

A table is a collection of rows having one or more columns. A row is a nonempty sequence of
values that corresponds to the column objects in a table. Every row of a table has same number of
columns and contains value for each column of the table. Row is the smallest unit of data that can
be inserted into a table and deleted from a table.

The degree of a table is the number of rows of that table.

Cardinality is defined as the number of columns in a table.

A table whose degree is 0 (zero) is said to be empty.

A table is either a base table or a derived table.

Base Table

Base table is the table wherein data is actually stored in the database. All base tables are updatable.
Derived Table

A table obtained from other tables directly or indirectly through the evaluation of a query
expression.

Derived tables are either updatable or not updatable. The operations of update and delete are
permitted for updatable tables, subject to Access Rule constraints.

Syntax

CREATE TABLE <table name> < table element list > [COUNTRY <country code>
LANGUAGE <language code> |

<table element list> ::= <left paren> <table element> [{ , <table element> }...] <right paren>
<table element> ::=<column definition><table constraint definition>

<column definition> ::=<column name>{ <data type> | <domain name> }[<default clause>] [
AUTOINCREMENT] [<column constraint definition>...]

<column constraint definition> ::=[<constraint name definition>]<column constraint> [
<constraint characteristics> |

<constraint name definition> ::= CONSTRAINT <constraint name>

<constraint characteristics> ::= <constraint check time> [[NOT | DEFERRABLE]
[NOT] DEFERRABLE [<constraint check time> |

<constraint check time> ::= INITIALLY DEFERRED | INITIALLY IMMEDIATE

<column constraint> ::= NOT NULL | <unique specification>| <references specification>| <check
constraint definition>

<default clause> ::=DEFAULT <default option>

<table constraint definition> ::= [<constraint name definition>] <table constraint> [<constraint
characteristics> |

<table constraint> ::=<unique constraint definition><referential constraint definition><check
constraint definition>

Daffodil DB 112

Daffodil DB SQL Reference Guide

J2EE Certified

<unique constraint definition> ::=<unique specification> <left paren> <unique column list> <right
paren>| UNIQUE (VALUE)

<unique specification> ::= UNIQUE | PRIMARY KEY
<unique column list> ::= <column name list>

<referential constraint definition> ::=FOREIGN KEY <left paren><column name list><right
paren><references specification>

<references specification> ::=REFERENCES <referenced table and columns>[MATCH <match
type>][<referential triggered action>]

<match type> ::= FULL | PARTIAL | SIMPLE

<referenced table and columns> ::=<table name> [<left paren><column name list><left paren>]
<reference column list> ::= <column name list>

<referential triggered action> ::=<update rule> [<delete rule>]| <delete rule> [<update rule>]
<update rule> ::= ON UPDATE <referential action>

<delete rule> ::= ON DELETE <referential action>

<referential action> ::= CASCADE | SET NULL | SET DEFAULT | RESTRICT | NO ACTION
<check constraint definition> ::=CHECK <left paren> <search condition> <right paren>
TableName

TableName is the name of the table structure.

Country and Language

It is optional. User may specify the country code and language in which he/she wants to store the
data. All string type data will be stored in the user specified language using Unicode.

Table Element List

It refers to a list of different table elements.

Table Element

Each table element consists of Column Definition and Table Constraint Definition
Column Definition

The column definition contains all the information needed to define the columns that are part of a
table.

This includes:
Column Name

Column name is the name of the column structure within a table created with CREATE TABLE
statement. Column names must conform to the rules for identifiers and it must be unique in a
table.

Data type
The data type describes the type of data that can be stored in the column.

Daffodil DB 113

Daffodil DB SQL Reference Guide

J2EE Certified

Domain name
The domain name refers to the domain corresponding to a given column.
Default clause

The default clause allows one to specify default values for a given column. Possible default values
can be any literal/null value/datetime value function/ USER
/CURRENT_USER/CURRENT_ROLE/SESSION_USER/CURRENT_PATH or any implicitly
typed value specification.

Auto increment

Auto increment Declare the column as auto incremented. By default, column value starts from 1
with an Increment factor = 1.

User can declare only the following data type field as an auto incremented:

BIGINT, BYTE, INT, INTEGER, LONG, SMALLINT, TINYINT, DOUBLE PRECISION, FLOAT,
REAL, DEC, DECIMAL, NUMERIC.

Column constraint definition

Different constituents of column constraint definition are as follows:
Constraint Name

Constraint name refers to the identifier for a given constraint.

The column constraint

The column constraint consists is one or more keywords, which restrict the data that can be written
to a particular column. The column constraints supported by Daffodil DB are as follows:

e NOTNULL
e PRIMARYKEY
e UNIQUE

e FOREIGN KEY
e CHECK

All column constraints are optional.
Not Null

It indicates that a particular column must have a non-NULL value associated with it.

Primary key

It creates an index for the column. The PRIMARY KEY column constraint can specify a single
column only. In order to specify a PRIMARY KEY constraint with multiple columns, table
constraint is used.

Unique

It defines a unique key on the column. All values for this column must be unique. The UNIQUE
column constraint can specify a single column only. In order to specify a UNIQUE constraint with
multiple columns, table constraint is used.

Daffodil DB 114

Daffodil DB SQL Reference Guide

J2EE Certified

Foreign key

It indicates that a relationship exists between column value of this table (known as the child table)
and primary key of the parent table, which is referenced in the REFERENCES clause.

Check

The optional CHECK keyword indicates that the value of a column to be inserted or updated must
meet the criteria of the check constraint.

Constraint characteristics

It defines type of the constraint along with the check time. The constraint can be either initially or
immediate/initially deferred.

Immediate constraints

These constraints are applied when the operation is performed on the table.
Deferred

These constraints are applied at the time of commit.

The Table Constraint definition

It allows you to define a constraint that is applicable to the table. Usually this type of constraint is
used when you specify multiple columns for any type of constraint. The different constituents of
table constraint definition are:

Constraint name definition

This name is used to identify a constraint. Each constraint name must be unique for a table.
Table constraint It can be of any of these types.

Unique constraint The unique constraint defines an explicitly named primary key or unique
constraint of one or more columns.

Referential constraint

The referential constraint defines an explicitly named foreign key constraint of one or more
columns.

A given foreign key and its matching candidate key must contain the same number of columns, N,
such as: the I column of the foreign key corresponds to the I" column of the matching key (I = 1
to N), and corresponding columns must have exactly the same data type. The referenced table
must have a unique or primary index on the specified columns.

Match Types
MATCH FULL

Match Full specifies that for each row R1 of the referencing table, either the value of every
referencing column in R1 shall be a null value, or the value of every referencing column in R1
shall not be null and there shall be some row R2 of the referenced table such that the value of each
referencing column in R1 is equal to the value of the corresponding referenced column in R2.

Daffodil DB 115

Daffodil DB SQL Reference Guide

J2EE Certified

MATCH PARTIAL

Match Partial specifies that for each row R1 of the referencing table, there shall be some row R2
of the referenced table such that the value of each referencing column in R1 is either null or is equal
to the value of the corresponding referenced column in R2.

The referencing table may be the same table as the one referenced.
MATCH SIMPLE

Match Simple is the default type and specifies that for each row R1 of the referencing table, either
at least one of the values of the referencing columns in R1 shall be a null value, or the value of
each referencing column in R1 shall be equal to the value of the corresponding referenced column
in some row of the referenced table.

If MATCH FULL or MATCH PARTIAL is specified for a referential constraint and if the
referencing table has only one column specified in <referential constraint definition> for that
referential constraint, or if the referencing table has more than one specified column for that
<referential constraint definition>, but none of those columns are Nullable, then the effect is the
same as if no <match option> were specified.

Referential Triggered action

It consists of update/delete rule along with the referential action. The referential action can be any
of the following:

On delete clause

The ON DELETE clause defines the rules for deleting specific columns on the specified table.
On update clause

The ON UPDATE clause defines the rules for updating specific columns on the specified table.
If the ON DELETE or ON UPDATE clauses are omitted, the default is NO ACTION.

Referential action

With column constraints you must specify at least one identifier. These are:

CASCADE- has the effect of dropping all SQL objects that are dependent on a particular object.
SET NULL- assigns null values to all components of the target column.

SET DEFAULT- assigns default values to all the components of the target column.

RESTRICT- takes care of what objects are dependent on the object being dropped and if there are
dependent objects, then the dropping of the object does not take place.

NO ACTION omits the ON DELETE clause.

Check constraint

The check constraint defines an explicitly named check constraint of one or more columns.
Examples

Without constraints:

CREATE TABLE Post (PostID INT, PostName VARCHAR (20), PostRank VARCHAR (20))

Daffodil DB 116

Daffodil DB SQL Reference Guide

J2EE Certified

With column constraints:

CREATE TABLE Classes(ClassID int CONSTRAINT Class_PK PRIMARY KEY, ClassName
varchar(20) CONSTRAINT CLASS_NAME_NOT_NULL NOT NULL, SchoolID int
CONSTRAINT Class_School_FK REFERENCES School(SchoollD))

With table constraints

CREATE TABLE ClassProperties(ClassPropertiesID int CONSTRAINT ClassProperties_PK
PRIMARYKEY,

LecturerDescription VARCHAR(20), SubjectID int, ClassID int, TeacherID int, CONSTRAINT
ClassProperties_Subject_ FK FOREIGN KEY (SubjectID) REFERENCES Subject(SubjectID),

CONSTRAINT ClassProperties_Class_FK FOREIGN KEY(ClassID) REFERENCES
Classes(ClassID),

CONSTRAINT ClassProperties_Teacher_FK FOREIGN KEY(TeacherID) REFERENCES
Teacher(EmployeelD))

With Referential Triggered action and Match Type:
CREATE TABLE MarksRecord(Marks int, StudentID int, SubjectID int, ExamID int,

CONSTRAINT MarksRecord_Subject_FK FOREIGN KEY (SubjectID) REFERENCES
Subject(SubjectID),

CONSTRAINT MarksRecord_Exam_FK FOREIGN KEY (ExamID) REFERENCES
Exam(ExamlID),

CONSTRAINT MarksRecord_Student_FK FOREIGN KEY (StudentID) REFERENCES
student(StudentID) MATCH SIMPLE ON DELETE CASCADE)

With Country code option

CREATE TABLE Post (PostID INT, PostName VARCHAR (20), PostRank VARCHAR (20))
COUNTRY JP LANGUAGE JA

This will store above defined table in Japanese language.
CREATE Sequence

To create a sequence, use the SQL command CREATE SEQUENCE.

Syntax
CREATE SEQUENCE <local or schema qualified name>

[<initialize sequence> [<initialize sequence>...]]

<initialize sequence>::-
<sequence starter> <suinteger>
| <sequence type>
<sequence starter>:-
INCREMENT BY
| START WITH
<sequence type>:-
<maxvalue sequence>
| <minvalue sequence>

| <cycle in sequence>

Daffodil DB 117

Daffodil DB SQL Reference Guide

J2EE Certified

<maxvalue sequence>:-
MAXVALUE <suinteger>
I NOMAXVALUE
<minvalue sequence>:-
MINVALUE <suinteger>
I NOMINVALUE

<cycle in sequence> ::=
CYCLE

INOCYCLE

<local or schema qualified name>
It is the name of the sequence so created.

sequence starter

INCREMENT BY

This clause specifies the interval between sequence numbers. This integer value can be any
positive or negative integer, but it cannot be 0. The absolute of this value must be less than the
difference of MAXVALUE and MINVALUE. If this value is negative, then the sequence
descends. If the increment is positive, then the sequence ascends. If you omit this clause, the
default value of the interval becomes 1.

START WITH

This clause specifies the first sequence number to be generated. Use this clause to start an
ascending sequence at a value greater than its minimum or to start a descending sequence at a
value less than its maximum. For ascending sequences, the default value is the minimum value of
the sequence. For descending sequences, the default value is the maximum value of the sequence.

Note: - This value is not necessarily the value to which an ascending cycling sequence cycles after
reaching its maximum or minimum value.

MAXVALUE SEQUENCE

MAXVALUE
It specifies the maximum value, the sequence can generate. MAXVALUE must be equal to or

greater than START WITH and must be greater than MINVALUE.

NOMAXVALUE
It indicates a maximum value of 9223372036854775807. This is the default value.

MINVALUE SEQUENCE

MINVALUE
It specifies the minimum value of the sequence. MINVALUE must be less than or equal to

START WITH and must be less than MAXVALUE.

NOMINVALUE
It indicates a minimum value of -9223372036857447808. The default valueis 1 .

Daffodil DB 118

Daffodil DB SQL Reference Guide

J2EE Certified

CYCLE IN SEQUENCE

CYCLE
Specifying CYCLE will indicate that the sequence continues to generate values after reaching

either its maximum or minimum value. After an ascending sequence reaches its maximum value, it
generates its minimum value. After a descending sequence reaches its minimum, it generates its
maximum value.

NOCYCLE
Specifying NOCYCLE will indicate that the sequence cannot generate more values after reaching
its maximum or minimum value. This is the default value.

Example

CREATE SEQUENCE orders_seq
START WITH 1000
INCREMENT BY 1

NOCYCLE

This will create the sequence orders_seq in the default schema. This sequence provides numbers
when orders_seq.NEXTVAL or orders_seq.CURRENTVAL is called from any statement.

The first reference to orders_seq.nextval returns 1000. The second returns 1001. Each subsequent
reference will return a value 1 greater than the previous reference.

If you specify none of the following clauses, you create an ascending sequence that starts with 1
and increases by 1 with default upper limit. Specifying INCREMENT BY -1 only creates a
descending sequence that starts with Max value.

¢ To create a sequence that increment without bound, for ascending sequences, omit the
MAXVALUE parameter or specify NOMAXVALUE. For descending sequences, omit
the MINVALUE parameter or specify the NOMINVALUE.

e To create a sequence that stops at a predefined limit, for an ascending sequence, specify a
value for the MAXVALUE parameter. For a descending sequence, specify a value for the
MINVALUE parameter. Also specify the NOCYCLE. Any attempt to generate a sequence
number once the sequence has reached its limit results in an error.

e To create a sequence that restarts after reaching a predefined limit, specify values for both
the MAXVALUE and MINVALUE parameters. Also specify the CYCLE. If you do not
specify MINVALUE, then it defaults value is 1).

ALTER Sequence
To alter a sequence use the SQL. command ALTER SEQUENCE.

Syntax
ALTER SEQUENCE <local or schema qualified name>
<sequence incrementer> [<sequence incrementer>...]

<sequence incrementer>::= INCREMENT BY <suinteger> | <sequence type>
<sequence type>:-

<maxvalue sequence>

| <minvalue sequence>

| <cycle in sequence>

Daffodil DB 119

Daffodil DB SQL Reference Guide

J2EE Certified

| <sequence order>

<maxvalue sequence>:-
MAXVALUE <suinteger>
INOMAXVALUE
<minvalue sequence>:-
MINVALUE <suinteger>
I NOMINVALUE

<cycle in sequence> ::=
CYCLE

INOCYCLE

local or schema qualified name
It is the name of the sequence to be altered.

SEQUENCE INCREMENT

It specifies the interval between sequence numbers. This integer value can be any positive or
negative integer, but it cannot be 0. The absolute of this value must be less than the difference of
MAXVALUE and MINVALUE. If this value is negative, then the sequence descends. If the
increment is positive, then the sequence ascends.

MAXVALUE SEQUENCE
MAXVALUE

It specifies the maximum value, the sequence can generate.. MAXVALUE must be equal to or
greater than START WITH and must be greater than MINVALUE.

NOMAXVALUE
Specifying NOMAXVALUE indicates a maximum value of 9223372036854775807.

MINVALUE SEQUENCE

MINVALUE
It specifies the minimum value of the sequence. MINVALUE must be less than or equal to
START WITH and must be less than MAXVALUE.

NOMINVALUE
Specifyig NOMINVALUE indicates a minimum value of -9223372036857447808.

CYCLE IN SEQUENCE

CYCLE
Specifying CYCLE indicates that the sequence continues to generate values after reaching either

its maximum or minimum value. After an ascending sequence reaches its maximum value, it
generates its minimum value. After a descending sequence reaches its minimum, it generates its
maximum.

NOCYCLE
Specifying NOCYCLE indicates that the sequence cannot generate more values after reaching its
maximum or minimum value. This is the default value.

Daffodil DB 120

Daffodil DB SQL Reference Guide

J2EE Certified

Example

ALTER SEQUENCE orders_seq
INCREMENT BY 2
CYCLE

This will alter the sequence orders_seq in the default schema.

DROP Sequence
To drop a sequence use the SQL command DROP SEQUENCE.

Syntax
DROP SEQUENCE <local or schema qualified name>

<local or schema qualified name>
It is the name of the sequence to be dropped. For <local or schema qualified name> you may use
an existing sequence name.

Example
DROP SEQUENCE orders_seq

This will drop the sequence orders_seq in the default schema.

Create Trigger Statement

Create Trigger statement is used to create a trigger.

A trigger can specify additional constraints and business rules within the database to manage a
number of executions of an application. Triggers help us to enforce data integrity rules with
actions such as cascading deletes or updates. Triggers can also perform a variety of functions such
as issuing alerts, updating other tables, sending e-mails, and other useful actions.

Trigger

Trigger defines a set of actions that are executed when a database event occurs on a specified
table. A database event can be delete, insert, or update operation that is performed by the user.

Syntax:
<trigger definition> ::=

CREATE TRIGGER <trigger name> <trigger action time> <trigger event> ON <table name> [
REFERENCING <old or new values alias list>] <triggered action>

<trigger action time> ::=

BEFOREI AFTER

<trigger event> ::=

INSERT | DELETE | UPDATE [OF <column name list>]
<triggered action> ::=

[FOR EACH { <action type rule> } | [WHEN <left paren> <Boolean Expression> <right paren>
] <triggered SQL statement>

Daffodil DB 121

Daffodil DB SQL Reference Guide

J2EE Certified

<action type rule> ::=
ROW | STATEMENT
<triggered SQL statement> ::=

<SQL procedure statement> | BEGIN ATOMIC { <SQL procedure statement> <semicolon> }...
END

<old or new values alias list> ::= <old or new values alias>...
<old or new values alias> ::= OLD [ROW] [AS] <identifier>
| NEW [ROW] [AS] <identifier>

| OLD TABLE [AS] <identifier>

INEW TABLE [AS] <identifier>

Trigger name

It defines a unique trigger in a schema.

Trigger action time

It signifies when a trigger can be fired or executed relative to the trigger event. It takes one of the
following values:

BEFORE

Before indicates the state of database instance at a particular time before the statement’s changes
are applied and before any constraints had been applied to the target table.

AFTER

After indicates the state of database instance at a particular time after all constraints have been
satisfied and after the changes have been applied to the target table.

Trigger event

It specifies what type of SQL statement fires or executes the trigger. It can take one of the
following SQL statements: DELETE, INSERT, or UPDATE.

Table name

It specifies the name of the table to which the trigger belongs. A table is allowed to have multiple
triggers.

Referencing clause

This clause defines correlation or alias names for old and new values of a row or for the old or
new table. You can use the correlation or alias names in the WHEN (search condition) clause or in
SQL statements of the trigger body.

Action Type Rule

This clause determines the number of times that a trigger will be fired for each triggering event. It
can take the value of either ROW or STATEMENT.

Statement specifies the trigger body to execute only once regardless of the number of rows being
modified (deleted, inserted, or updated) by the triggering event statement.

Daffodil DB 122

Daffodil DB SQL Reference Guide

J2EE Certified

Row specifies the frigger body to execute once for each row that is being modified by the
triggering event statement.

When (Boolean Expression) specifies the conditions for executing triggered SQL statement. All
supported SQL search conditions are allowed in this clause.

Triggered SQL Statement

It specifies an SQL statement that the trigger executes.

Single Statement Execution

You can only use one SQL statement in the triggered SQL statement. If the granularity of the
trigger is ROW or STATEMENT, the triggered SQL Statement can only take the values of the
following SQL statements.

e Insert
» Update
¢ Delete

Multiple Statement Execution

However, if you use the BEGIN ATOMIC...END keywords, you can execute any number of
statements.

You can define any number of triggers for a single table, including multiple triggers on the same
table for the same event. You can create a trigger in any schema except
System.definitions_schema, which is the system table schema.

Order of Execution

When a database event occurs that fires a trigger, Daffodil DB performs actions in the following
order:

* It performs the insert, update, or delete.

* It fires before triggers.

* [t performs constraint checking (primary key, unique key, foreign key, check).
* It gets fired after triggers.

When multiple triggers are defined for the same database event for the same table and for the same
trigger time (before or after), then they are fired in the order in which they were created.

Trigger Recursion

It is possible for one trigger to cause itself to fire, and thus it is possible for triggers to recur
infinitely.

Examples

Trigger Before Insert at statement level

Create trigger abc before insert on classes for each statement update classproperties set
subjectID=1

Daffodil DB 123

Daffodil DB SQL Reference Guide

J2EE Certified

This trigger is fired before the insertion occurs in the classes table and updates the classproperties
table.

Trigger After Insert with Aliases

create trigger abcl after insert on Teacher REFERENCING NEW DEK for each row update Post
set Postname = "Teacher’ where postID=DEK.Postld

This trigger is fired after the insertion occurs in the Teacher table and updates the Post table. The
new inserted row in the Teacher table is referenced with the alias DEK.

Multiple Statement Execution In Trigger After Insert With Begin Atomic.. End

create trigger abc2 after insert on classes referencing new as newrow for each row BEGIN
Atomic update classes set ClassName="6th’ where schoollD = newrow. Schoolld; delete from
classes where ClassName="7th’; end

The trigger is fired after insert operation occurs on the Classes table.

The sql statement to be executed when a trigger is fired is enclosed within begin, atomic and end
keywords.

Create Procedure Statement

SQL Stored Procedure is nothing more than a collection of statement that is executed
automatically one after the other by Daffodil DB database server. The invocation of a stored
procedure is treated as a regular external call. The application waits for the stored procedure to
terminate, and parameters can be passed back and forth. Stored procedures can be called locally
(on the same system where the application runs) and remotely on a different system. However,
stored procedures are particularly useful in a distributed environment since they may considerably
improve the performance of distributed applications by reducing the traffic of information across
the communication network.

For example, if a client application needs to perform several database operations on a remote
server, you can choose between issuing many different database requests from the client site and
calling a stored procedure. In the first case, you start a dialog with the remote system every time
you issue a request. If you call a stored procedure instead, only the call request and the parameters
flow on the line. In addition, the server system executes some of the logic of your application with
potential performance benefits at the client site.

Syntax

<SQL-invoked procedure> ::= CREATE PROCEDURE <routine name> <SQL parameter
declaration list> <routine characteristics> <routine body>

<SQL parameter declaration list> ::= <left paren> [<SQL parameter declaration> [{ <comma>
<SQL parameter declaration> }... |] <right paren>

<SQL parameter declaration> ::= [<parameter mode>] [<SQL parameter name>] <parameter
type>

<parameter mode> ::= IN

|OUT

[INOUT

Daffodil DB 124

Daffodil DB SQL Reference Guide

J2EE Certified

<routine characteristics> ::= [<routine characteristic>...]
<routine characteristic> ::= <language clause>

I SPECIFIC <specific name>

<language clause>::= SQL

<routine body>::= <SQL routine body>

| <external java reference>

<SQL routine body>::= <SQL procedure statement>

<SQL procedure statement>::= <SQL Statements>

<external java reference>::= EXTERNAL NAME <external method name> [<java method
signature>|

<external method name>::= [{< jar name> <colon>}] <java method name>

<Jar name> ::=< catalog id> <period> <schema id> <period> <jar id>

| <schema id> <period> <jar id>

I <jar id>

<Catalog id>::= <identifier>

<Schema id>::= <identifier>

<Jar id>::= <identifier>

<Java method name>::= <java class name> <double colon> <method identifier>
<Java class name>::= <package identifier> [{<period> <package identifier>}...]
<Package identifier>::= <java identifier>

<Class identifier>::= <java identifier>

<method identifier>::= <java identifier>

<java identifier>::= <identifier>

<java method signature>::= <left paren> [<java parameters> | <right paren>

<java parameters> ::= <java datatype> [{ <comma> <java datatype> }... |

<java datatype> ::=

BIGINT | BINARY | BIT | BLOB | BOOLEAN | CHAR | CLOB | DATE | DECIMAL
| DOUBLE | FLOAT | INTEGER | NULL | NUMERIC | REAL | SMALLINT | TIME
| TIMESTAMP | TINYINT | VARBINARY | VARCHAR | JAVAPARAMETER

Daffodil DB 125

Daffodil DB SQL Reference Guide

J2EE Certified

IN, OUT, INOUT Parameters

According to SQL-99 specification, a parameter defined in a procedure statement could either be
IN, OUT or INOUT.

By default it is IN.

IN

User has to provide the value of the parameter while calling procedures.
ouT

User can get its value after calling the procedure.

INOUT

User has to provide the value before and can get the value after calling the procedure.

According to SQL-99 specification in a particular schema, there could be any number of
procedures with the same name but with different number of parameters. e.g.

abc.procedure_name (IN xyz integer)
and
abc.procedure_name (IN xyz integer, IN rst integer) is valid.

So, to differentiate between these procedures, SQL-99 has specific names. A specific name cannot
be repeated in a schema i.e. in a schema you cannot have 2 procedures with the same name.
Although specific name is optional as per the specification, yet we recommend you to write the
specific name as you cannot drop a procedure without a specific name.

Example 1

The following example inserts a row in the Student table.

CREATE PROCEDURE Student_row_insert (IN varid INT, IN varname varchar
2251(1)')1:01111\1110 int, IN vargender char (1), IN varaddr varchar (80), IN varphone varchar
izzz:’lzlgid int) SPECIFIC STUDENT_ROW_INSERT AS BEGIN INSERT INTO
:;Xg%llgs (varid, varname, varrollno, vargender, varaddr, varphone, varclasid); END;

Example 2

This example modifies the salary of a teacher.

CREATE PROCEDURE Modify_Teacher_Salary (IN varteacherid int, IN varsalary
1Snf%CIFIC MODIFY_TEACHER_SALARY AS BEGIN UPDATE teacher SET salary
:arsalary WHERE employeeid = varteacherid; END;

Example 3

Daffodil DB 126

Daffodil DB SQL Reference Guide

J2EE Certified

This example retrieves the Marks of the student for the Studentld passed.

CREATE PROCEDURE Student_Mark_InOut_Proc (OUT INOUT_PARAM
INTEGER)

SPECIFIC Student_Marks InOut_Proc as BEGIN SELECT Marks into
INOUT_PARAM from

MarksRecord WHERE Studentld=INOUT_PARAM; END;

External Java Method

External java reference is used to call the method of a java class.

Though jar name is optional, but the jar, which is specified in the class path, can be provided.

Package name is optional. But if specified with the java class then it will search the given java
class in the specified package else java class will be looked for in the current package.

The Specified Class Name must have a constructor for the parameter of java, sql.Connnection data
type; otherwise an Exception will be thrown.

The java data type in the specified function must be a java parameter for each and every Out or
InOut parameter mentioned in the Procedure Definition.

The java data type in the specified function must contain same count of parameters as defined in
the Procedure Definition.

The specified Class must contain specified functions having parameters of same count and same
data type as defined in the Procedure Definition.

Example
This example call a java procedure

CREATE PROCEDURE Procedure_Name (OUT varl int, IN var2 Boolean, INOUT
var3 int) specific Specfic_Procedure_Name EXTERNAL

NAME Jar_Name:java.sql.Connection::SQLConnect(Javaparameter, Boolean,
javaparameter);

Example-1
CREATE PROCEDURE Procedure_Name() specific Specfic_Procedure_Name
EXTERNAL NAME Connection::getConnection ()

Example-2

CREATE PROCEDURE Procedure_Name (IN a int, IN b Boolean) specific
Specfic_Procedure_Name EXTERNAL NAME Jar_Name:Connection::displayData
(Integer, Boolean)

Example-3
CREATE PROCEDURE Procedure_Name() specific Specfic_Procedure_Name
EXTERNAL NAME com.java.sql.Connection::setUrl()

Daffodil DB 127

Daffodil DB SQL Reference Guide

J2EE Certified

Example-4
CREATE PROCEDURE Procedure_Name() specific Specfic_Procedure_Name
EXTERNAL NAME Statement::CreateStatement ()

Following are the types of statements that can be used in the body of the procedure:
1) Assignment statement: It is used for assigning values.
Syntax:

SET <assignment target> <equals operator> <assignment source>

<assignment target> ::= <target specification>
| <modified field reference>
| <mutator reference>

<mutator reference> ::=< mutated target specification> <period> <method name>
<mutated target specification> ::= <target specification>

| <left paren> <target specification> <right paren>

| <mutator reference>

<assignment source> ::= <value expression>

| <contextually typed source>

<contextually typed source> ::= <implicitly typed value specification>
| <contextually typed row value expression>

Example:

Seta=1

2) Compound statement: It is used to write a block of statements collectively at one place.
Syntax:

<compound statement> ::= [<beginning label> <colon>]
BEGIN [[NOT] ATOMIC]
[<local declaration list> | [<local cursor declaration list> | [<SQL statement list>]

END [<ending label>]

<beginning label> ::= <statement label>

<local declaration list> ::= <terminated local declaration>...

<local cursor declaration list> ::= <terminated local cursor declaration>...

<terminated local cursor declaration> ::= <declare cursor> <semicolon>

<SQL statement list> ::= <terminated SQL statement>...

<ending label> ::= <statement label>

Example:

Daffodil DB 128

Daffodil DB SQL Reference Guide

J2EE Certified

BEGIN

Set a=1;

Insert into student values (101,daisy’);
END

Daffodil DB 129

Daffodil DB SQL Reference Guide

3)

4)

J2EE Certified

Case statement: It is used to perform some action depending on the set of conditions. It is
also used to replace multiple if statements.

Syntax :

<case statement> ::= <simple case statement> | <searched case statement>

<simple case statement>::=

CASE <simple case operand 1>

<simple case statement when clause>...

[<case statement else clause>]

END CASE

<simple case operand 1> ::= <value expression>

<value expression> ::= <value expression primary>

| <row value constructor> | <value specification>

| <boolean value expression> | <datetime value expression>
| <string value expression> |<numeric value expression>
<simple case statement when clause> ::=

WHEN <simple case operand 2>

THEN <SQL statement list>

<case statement else clause> ::= ELSE <SQL statement list>

<searched case statement> ::=

CASE

<searched case statement when clause>... [<case statement else clause>]
END CASE

Example :

Case rollno
When 101 then insert into student(name) values('daisy’);
When 102 then insert into student(name) values(’sanya’);
Else

insert into student (name) values (john’);

End case;

If statement: It is used to perform some action depending upon a given set of conditions.
Syntax :

<if statement> ::=

IF <search condition>

<if statement then clause> [<if statement else if clause>...] [<if statement else clause>]
END IF

<if statement then clause> ::=THEN <SQL statement list>

<if statement else if clause> ::= ELSEIF <search condition> THEN <SQL statement list>

<if statement else clause> ::=ELSE <SQL statement list>

Daffodil DB 130

Daffodil DB SQL Reference Guide

J2EE Certified

Example

If (rollno=101) then insert into student(name) values(jjohn’);
Elseif (rollno=102) then into student (name) values (‘david’);
Else insert into student (name) values (‘sanya’);

End If;

5) Iterate statement: This statement is used within a loop. When this statement is encountered,
control is transferred to the beginning of the loop.

Syntax :
<iterate statement> ::= [ITERATE <statement label>
Example:
create procedure proc4() specific sproc4
as begin
begin

declare aa int;

set aa = 2;

lab:

repeat
if aa in (22,24,26,28,10) then
set aa = aa+3;
iterate lab;
else insert into school(schoolid,schoolname) values(aa,’a’);

end if;

set aa = aa+3;
until aa>=10
end repeat;
end;

end;

6) Leave statement: This statement is used to come out of a loop. When this statement is
executed, control is transferred out of the loop.
Syntax:

<leave statement> ::= LEAVE <statement label

Daffodil DB 131

Daffodil DB SQL Reference Guide

J2EE Certified

Example:
Set a=1;
WHILELABEL : While(a<10) do
Set a=a+1;
If (a=5) then
leave WHILELABEL;
End while;

Note: - In the above case, body of while loop will be executed 4 times, after that control will
exit of while loop (when a =5, condition will be true)

7) Loop statement: It is used to execute a group of statements repeatedly.
Syntax :

<loop statement> ::= [<beginning label> <colon>]
LOOP

<SQL statement list>

END LOOP [<ending label>]

Example :
LOOP
Set a=1;
Set a=a+1;
END LOOP
Above shown is an infinite loop.

8) While statement :It is used to execute a group of statements repeatedly as long as search condition
is true.

Syntax:

<while statement> ::= [<beginning label> <colon>]
WHILE <search condition> DO

<SQL statement list>

END WHILE [<ending label>]

Example:
WHILE a < 20 do
if mod(a,2)=0 then
insert into Table_Name(one) values(a);
else
insert into Table_Name (three) values(a);
end if ;
seta=a+1;
End While;
Daffodil DB 132

Daffodil DB SQL Reference Guide

J2EE Certified

9) Repeat statement: It is used to execute a group of statements repeatedly until a condition becomes
true.

Syntax :

<repeat statement> ::= [<beginning label> <colon>]
REPEAT

<SQL statement list>

UNTIL <search condition>

END REPEAT [<ending label>]

Example:

REPEAT
Insert into Table_Name values(0,1);
Set a=a+1;

UNTIL (a>10)

END REPEAT;

Cursor

Operations in a relational database act on a complete set of rows. The set of rows returned by a
SELECT statement consists of all the rows that satisfy the conditions in the WHERE clause of the
statement. This complete set of rows returned by the statement is known as the Result Set.
Applications, especially interactive online applications, cannot always work effectively with the
entire Result Set as a unit. These applications need a mechanism to work with one row or a small
block of rows at a time. Cursors are a logical extension to Result Sets that let applications work with
the Result Set, row by row.

Syntax

<declare cursor> ::=

DECLARE <cursor name> [<cursor sensitivity> |
[<cursor scrollability>] CURSOR

[<cursor holdability> |

[<cursor returnability>]

FOR <cursor specification>

<cursor name> ::= <local qualified name>

<cursor sensitivity> ::=
SENSITIVE

| INSENSITIVE

| ASENSITIVE

Daffodil DB 133

Daffodil DB SQL Reference Guide

J2EE Certified

<cursor scrollability> ::=
SCROLL
INO SCROLL

<cursor holdability> ::=
WITH HOLD
| WITHOUT HOLD

<cursor returnability> ::=
WITH RETURN
| WITHOUT RETURN

<cursor specification> ::=
<query expression> [<updatability clause>]

<updatability clause> ::=
FOR { READ ONLY | UPDATE [OF <column name list>] }

If <cursor sensitivity > is not specified, then ASENSITIVE is implicit, otherwise cursor is
sensitive if SENSITIVE is specified, insensitive if INSENSITIVE is specified and asensitive if
ASENSITIVE is specified explicitly.

If <cursor scrollability > is not specified, then NO SCROLL is implicit.
If <cursor holdability > is not specified, then WITHOUT HOLD is implicit.
If <cursor returnability > is not specified, then WITHOUT RETURN is implicit.

If <updatability clause> is not specified, then:

a) If either INSENSITIVE, SCROLL, or ORDER BY is specified, or if QF is not a simply
updatable table, then an <updatability clause> of READ ONLY is implicit.

b) Otherwise, an <updatability clause> of FOR UPDATE without a <column name list> is
implicit.

If an <updatability clause> of FOR UPDATE with or without a <column name list> is specified,
then INSENSITIVE shall not be specified and QF shall become updatable.

If an <updatability clause> specifying FOR UPDATE is specified or implicit, then cursor is
updatable, otherwise cursor is not updatable.

If WITH HOLD is specified, then the cursor specified by the <cursor specification> is said to be
a holdable cursor.

If WITH RETURN is specified, then the cursor specified by the <cursor specification> is said to
be a result set cursor.

Daffodil DB 134

Daffodil DB SQL Reference Guide

J2EE Certified

DECLARE num_salary, str_emp_code int;
DECLARE cursoremp cursor for
select emp_code, salary from employee where deptno = 1;
open cursoremp;
IF cursoremp%ISOPEN THEN
FETCH cursoremp INTO str_emp_code,num_salary;
lab : while cursoremp%FOUND do
UPDATE employee SET salary = num_salary + (num_salary * 0.05) where
emp_code = str_emp_code;
insert into emp_raise values (str_emp_code,num_salary * 0.05);
FETCH cursoremp INTO str_emp_code,num_salary;
end while;
close cursoremp;
END IF;

Note: - In the example given above, a cursor named cursoremp is used to increment the salary of
all employees from department with department code 1 and to insert the incremented amount in
another table named emp_raise.

Daffodil DB 135

Daffodil DB SQL Reference Guide

J2EE Certified

Create View Statement

A Create View Statement creates a view.
View

Derived Tables or “Virtual Tables” are known as Views. They provide an alternative way to look
at the data of one or more tables. This virtual table or view derives its values from the evaluation
of a query expression in the Create View statement. The query expression can reference base
tables, other views, aliases, etc. Essentially, a view is a stored Select statement, of which results
can be retrieved at a later time by querying the view as if it was a table. A view can be read-only
or updatable.

Syntax

<View definition>:= CREATE VIEW <table name> < regular view specification> AS <query
expression>

<regular view specification>:= [<left paren> <view column list> <right paren> |
<view column list>:= <column name list>

Regular View Specification

It specifies a column List, where the names used would be taken as view column Names.
This is optional and follows the rules given below:

If it is not null, then all columns in a column list would be taken as columns of view. If it is null,
then column names in a view would be taken from query expression.

Column count in the column list of regular view specification should be equal to the selected
column list in the select list of the select query of Query Expression.

Query Expression

It is a select query, where results create view definition. So, if a column list in the regular view
specification is null, then selected column list in the select list of a select query would be taken as
column names in the view.

Rules for select query are

In the following cases, alias name is essential in the select list of select query

e.g. (a+b), (a*b) etc.

If a column list in regular view specification is not null, then there is no need for an alias name.
Example 1

CREATE VIEW vl AS SELECT DateOfJoining as Joining Time FROM Teacher

By this query one can create a view having column name as JoiningTime.

Example 2

CREATE VIEW v2 (StudentID, Marks) AS SELECT Student.StudentID, Marks FROM Student,
MarksRecord WHERE Student.StudentID = MarksRecord.StudentID

By this view, one can create a view having column names = StudentID and Marks. This view will
show the marks of each student along with StudentID. It will take values from tables Student and
MarksRecord.

Daffodil DB 136

Daffodil DB SQL Reference Guide

J2EE Certified

Create Index Statement

It creates an index on a given table. Only table or view owner can create indexes on that table. The
owner of a table can create an index at any time, irrespective of whether there is data in the table
or not. Indexes are mainly created to make the retrieval faster in the case of ORDER BY and
condition queries referring index column.

Syntax

CREATE INDEX <index name> ON <table name> <left paren> <column name> [ASC | DESC]
[{, <column name> [ASC | DESC] }...] <right paren>

index name

It is the name of the index. Index names must be unique within a table but do not need to be
unique within a database. Index names must follow the rules of identifiers.

table name

It is name of the table already created that contains column or columns to be indexed. Specifying a
catalog name and a schema name is optional.

column

It is the column or columns on which the index is made. Specify two or more column names to
create a composite index on the combined values in the specified columns. List the columns to be
included in the composite index (in sort-priority order) inside the parenthesis after table.

ASC or DESC

Determine the ascending or descending sort direction for the particular index column. The default
is ASC.

Example 1

CREATE INDEX TeacherNamelndex1 ON Teacher (TeacherName)

OR

CREATE INDEX TeacherNameIndex1 ON Teacher (TeacherName ASC)

It creates the index with a name TeacherNamelndex1 on Teacher table, which helps in the quick
retrieval of data on the column TeacherName, maintaining index in the ascending order.

Example 2

CREATE INDEX TeacherNameIndex2 ON Teacher (TeacherName DESC)

It creates the index with a name TeacherNamelndex2 on Teacher table, which helps in the quick
retrieval of data on the column TeacherName, maintaining index in the descending order.

Example 3

CREATE INDEX DepartmentTeacherNamelndex ON Teacher (DepartName ASC, TeacherName
DESC)

It creates the index with a name DepartmentTeacherNamelndex on Teacher table, which helps in
the quick retrieval of data on the columns Department and TeacherName, maintaining index in the
ascending order of Department and the descending order of TeacherName.

Daffodil DB 137

Daffodil DB SQL Reference Guide

J2EE Certified

Creating too many indexes may increase memory usage and slow down the working of data
manipulation commands.

Create FullText Index Statement*

It creates FullText index on a given table. Only the table or view owner can create FullText
indexes on that table. Owner of the table can create FullText index at any time irrespective of
whether there is data in the table or not. FullText Indexes are mainly created to make the retrieval
faster in the case of ORDER BY and condition queries referring FullText indexed column.

Syntax

CREATE FULLTEXT INDEX <Index name> ON <table name> <left paren> <column name> [{,
<column name>}...] <right paren>

index name

It is the name of the FullText Index. FullText index names must be unique within a table but does
not need to be unique within a database. FullText index names must follow the rules of identifiers.

table name

It is the name of the already created table that contains the column or columns to be indexed.
Specifying the catalog name and schema name is optional.

column

It is the column or columns on which the FullText index is made. Specify two or more column
names to create a composite FullText index on the combined values in the specified columns. List
the columns to be included in the composite FullText index inside the parenthesis after table.
Example 1

CREATE FULLTEXT INDEX TeacherNamelndex1 ON Teacher (TeacherName)

Create FullText index with the name TeacherNamelndex1 on Teacher table, which helps in quick
retrieval of data on the column TeacherName.

Example 2

CREATE FULLTEXT INDEX DepartmentTeacherNamelndex ON Teacher (DepartName,
TeacherName)

Create FullText index on multiple columns with the name DepartmentTeacherNamelndex on
Teacher table, which helps in quick retrieval of data on the columns DepartmentName and
TeacherName.

Creating too many FullText indexes may increase the memory usage and slows down the working
of data manipulation commands as well.

[* Features that are not supported in One$DB |

Daffodil DB 138

rajat.chugh
* Features that are not supported in One$DB

Daffodil DB SQL Reference Guide

J2EE Certified

Create Domain Statement

Create Domain Statement is a domain definition that specifies a data type. It may also specify a
<domain constraint> that further restricts the valid values of the domain or a <default clause> that
specifies the value to be used in the absence of an explicitly specified value or column default.

Domain

A domain is a set of permissible values. A domain is defined in a schema and is identified by a
<domain name>. The purpose of a domain is to constraint the set of valid values that can be stored
in a column of a base table by various operations.

Syntax

<domain definition> ::= CREATE DOMAIN <domain name> [AS] <data type> [<default
clause> |

[<domain constraint>... |

<domain constraint> ::= [<constraint name definition>] <check constraint definition> [
<constraint characteristics> |

Domain name

It is the name of the domain to be created.

Data Type

The data type description of the data type of the domain.
Default clause

Default Clause is used to define a default value for the domain.
Domain constraints

Domain constraint is a constraint that is specified for a domain. It is applied to all columns that are
based on that domain, and to all values directed to that domain.

Example
CREATE DOMAIN intdom as Integer check (value > 100)

This domain will have integer values with a constraint that the values should be greater than 100.

Create Schema Statement

CREATE SCHEMA statement creates a schema in the database. Schema names must be unique
within the database.

Schema

Databases contain collections of independent schemas. A schema is a logical grouping of tables,
indexes, triggers, routines, and other data objects under one qualifying name.

User that creates a schema owns that schema unless the optional AUTHORIZATION qualifier is
used to specify another user. The schema owner can grant applicable privileges to appropriate
users.

Daffodil DB 139

Daffodil DB SQL Reference Guide

J2EE Certified

Syntax
<schema definition> ::= CREATE SCHEMA <schema name clause> [<schema element>...]

<schema name clause> ::= <schema name> AUTHORIZATION <schema authorization
identifier>

AUTHORIZATION <schema authorization identifier>
| <schema name>

<schema authorization identifier> ::=<authorization identifier>
<schema element> ::=

<table definition>

| <view definition>

| <domain definition>

| <trigger definition>

| <schema routine>

| <grant statement>

| <role definition>

| <grant role statement>

Table definition

This is used to create a table.

View definition

This is used to create a view.

Domain definition

This is used to define a domain.

Trigger definition

This is used to create a trigger.

Schema routine

This is used to define a schema procedure or a schema function.
Grant statement

This is used to grant privileges and role authorizations.

Role definition

This is used to create a role.

Daffodil DB 140

Daffodil DB SQL Reference Guide

J2EE Certified

Examples
Create a schema for sample database

CREATE SCHEMA SampleDatabaseSchema
Create a table called Post in schema SampleDatabaseSchema

CREATE TABLE SampleDatabaseSchema.Post (PostID int, PostName varchar (20), PostRank
VARCHAR (20))

Example 1
CREATE SCHEMA Schema_Name AUTHORIZATION User_Name CREATE Role Role_Name

Example 2

CREATE SCHEMA Schema_Name AUTHORIZATION User_Name CREATE TABLE
Table_Name (Columnl integer , Column2 varchar(20))

Create User Statement

Create user Statement is used to create a user in the database. By default, user has no access to
SQL data objects like table, schema etc. until the user creates its own tables and schemas or he had
been explicitly granted privileges by another user to create data objects.

Syntax
CREATE USER <user name> PASSWORD <password name>
User name

It specifies the name of the new user. You cannot use the keyword PUBLIC or an existing role
name for the user name.

Password

It is the password associated with the user.

The user name and password name must follow the rules of SQL Identifiers.
Example

Create User Marty PASSWORD marty

Above example creates a user ‘Marty’ in the database whose password is ‘marty’.

Create User user] PASSWORD userl
Create User user2 PASSWORD user2
Create User user3 PASSWORD user3

Above examples creates multiple users with name ‘user1’, ‘user2’, ‘user3’ in the database whose
password is ‘userl’, ‘user2’, ‘user3’.

Daffodil DB 141

Daffodil DB SQL Reference Guide

J2EE Certified

Alter Table Statement
Alter table changes the table definition and modifies the structure of the table.

The ALTER TABLE statement allows you to:

* Add column to a table.

* Add constraint to a table.

* Drop an existing constraint from a table.

* Add a default value for an existing column in a table.

* Drop a default value for a column in a table by setting the default value to null.
Syntax

ALTER TABLE <table name> <alter table action>

<alter table action> ::= <add column definition> | <alter column definition>| <drop column
definition>| <add table constraint definition><drop table constraint definition>

<add column definition> ::=ADD [COLUMN]| <column definition>

<alter column definition> ::=ALTER [COLUMN] <column name> <alter column action>

<alter column action> ::= <set column default clause> <drop column default clause>

<set column default clause> ::=SET <default clause>

<drop column default clause>::=DROP DEFAULT

<drop column definition> ::=DROP [COLUMN] <column name> <drop behavior>

<add table constraint definition> ::= ADD <table constraint definition>

<drop table constraint definition> ::= DROP CONSTRAINT <constraint name> <drop behavior>
Table name

The table name refers to an existing table in the database.

Alter table action

The action allows adding or dropping a constraint or column. It can be of the following types:

Add column definition

This definition adds a column to a table. The syntax for the Column Definition for a new column
is same as that for a column in the CREATE TABLE statement. This means that a column
constraint can be placed on the new column within the ALTER TABLE ADD COLUMN
statement. However, column with a NOT NULL constraint can be added to an existing table if and
only if the table is empty; otherwise, an exception is thrown, when the ALTER TABLE statement
is executed.

Alter column definition

It changes the column and its definition. The alter column action can be of any of the following

types:
1) Set column default clause: Sets the default clause for a column.
Daffodil DB 142

Daffodil DB SQL Reference Guide

J2EE Certified

2) Drop column default clause: Drops the default clause from a column.
Drop column definition

This definition destroys a column of the base table depending upon the drop behavior.

Add Table Constraint Definition
This definition adds a Constraint to a table.

Drop Table Constraint Definition

This definition destroys a constraint on the table depending upon the drop behavior.
Drop behavior

Drop behavior can be either restrict or cascade.

The optional RESTRICT qualifier to a DROP statement allows a drop only if no objects are
dependent on the column or constraint. The optional CASCADE qualifier to a DROP statement
drops all related objects to the column or constraint.

Examples

Add a new column with a column-level constraint to an existing table.

An exception will be thrown if the table contains any rows.

ALTER TABLE ClassProperties ADD COLUMN Sections VARCHAR(6) CONSTRAINT
new_constraint NOT NULL

Add a default value to a column (existing rows are not affected).

ALTER TABLE Post alter column postrank set DEFAULT ’1’

Add a table constraint.

Alter Table marksRecord Add constraint marksCheck_constraint check(marks<100)

Drop a table constraint.

Alter table marksRecord Drop constraint marksCheck_constraint cascade

Daffodil DB 143

Daffodil DB SQL Reference Guide

J2EE Certified

Drop Table Statement

DROP TABLE removes the specified table.
Syntax

DROP TABLE <table name> [<drop behavior>]
<drop behavior> ::= CASCADE | RESTRICT
Restrict

If RESTRICT is specified, and if there are any table constraints, or views that use the table name,
then neither the table is dropped nor the table constraints or the views referring it.

Cascade

With CASCADE, all indexes, columns, constraints, triggers, and SQL routines that are associated
with table name are dropped as well as the table. RESTRICT is by default.

Example
Drop table Student restrict

This is used to drop the table Student.

Drop View Statement

A Drop View Statement drops a view.

Derived Tables or “Virtual Tables” are known as Views. They provide an alternative way to look
at the data of one or more tables. This virtual table or view derives its values from the evaluation
of a query expression in the Create View statement. The query expression can reference base
tables, other views, aliases, etc. Essentially, a view is a stored Select statement, of which you can
retrieve results at a later time by querying the view as though it was a table. A view can be read-
only or updatable.

Syntax

<drop view statement> ::= DROP VIEW <table name> <drop behavior>
<drop behavior> ::= CASCADE | RESTRICT

CASCADE

If a view is referenced i.e. used by some other objects, then view and objects, which are referring
this view are also dropped.

RESTRICT

If a view is referenced or is in use by some other objects, then this view is not dropped.
Example

DROP VIEW vl RESTRICT

Above example drops view V1, if it is not referenced by any another SQL object.
DROP VIEW v2 CASCADE

Above example drops view v2 and all other SQL object referring this view.

Daffodil DB 144

Daffodil DB SQL Reference Guide

J2EE Certified

Drop Index Statement

This statement drops the specified index from the database on the specified table. Indexes are also
dropped, if you explicitly drop the table on which indexes are created.

Syntax
DROP INDEX <index name> Of <table name>

Index Name
It is the name of the index to be deleted.

Table
It is the name of the table on which index to be deleted was created.

Example
DROP INDEX TeacherNamelndex1 OF Teacher.

Above Example deletes the index TeacherNamelndex1 on table Teacher.

Drop FullText Index Statement*

This statement drops a specified FullText index from the database on a specified table. FullText
indexes are also dropped, if you explicitly drop the table on which FullText indexes are created.

Syntax
DROP FULLTEXT INDEX <index name> of <table name>

Index Name
It is the name of the FullText index to be deleted.

Table
It is the name of the table on which the FullText index to be deleted was created.

Example
DROP FULLTEXT INDEX TeacherNamelndex1 OF Teacher.

Above Example deletes the FullText index TeacherNamelndex1 on the table Teacher.

Drop Schema Statement

The DROP schema statement destroys a schema in the database.

Schema

A schema is a logical grouping of tables, indexes, triggers, routines, and other data objects under
one qualifying name.

Syntax
DROP SCHEMA <schema name> <drop behavior>
<Drop behavior> ::= CASCADE

| RESTRICT

|* Features that are not supported in One$DB
Daffodil DB 145

rajat.chugh
* Features that are not supported in One$DB

Daffodil DB SQL Reference Guide

J2EE Certified

Schema name
The schema name refers to the unique name of the schema.

Drop behavior

If RESTRICT is specified, and if there are any tables or SQL routines or etc. in the schema name,
then the schema is not dropped and neither are the tables in the SQL routines. With CASCADE,
all tables, indexes, columns, constraints, triggers, and SQL routines etc. that are associated with
schema name are dropped along with the schema.

RESTRICT is by default.
Example
Drop Schema SampleDatabaseSchema cascade

This is used to drop the schema SampleDatabaseSchema.

Drop Procedure Statement

Drop procedure statement is used to drop a previously defined SQL stored procedure. To drop a
procedure you should have corresponding specific name of the SQL stored procedure. Because of
this it is recommended that you specify a <specific name> at the time of defining SQL stored
procedures.

Syntax

DROP <specific routine designator> <drop behavior>

<drop behavior> ::=

RESTRICT

| CASCADE

<specific routine designator> ::= SPECIFIC PROCEDURE <specific name>
CASCADE

Cascade statement drops procedure and all its dependent objects.
RESTRICT

Restrict drops Procedure only if there are no other dependent objects.
Example

DROP SPECIFIC PROCEDURE student_row_insert CASCADE

Above Example drops procedure named student_row_insert and all its dependent objects.

Daffodil DB 146

Daffodil DB SQL Reference Guide

J2EE Certified

Drop Trigger Statement

Drop Trigger Statement removes trigger from the current database. You can remove a trigger by
dropping the trigger itself or by dropping the trigger table.

Syntax
DROP TRIGGER <trigger name>
Trigger name

It is the name of the trigger that is to be removed.

When a table is dropped, all triggers on that table are automatically dropped.
Note: - You don’t have to drop table triggers before dropping the table.
Example

DROP TRIGGER Insert_Teacher_Trigger

Above Example removes the trigger Insert_Teacher_Trigger entry specified in the System Table.

Drop User Statement

Drop user Statement is used to drop an existing user from database. When you drop an existing
user (suppose ‘Marty’) from database then all the schema objects (like tables, views, procedures
etc...) whose owner is user ‘Marty’ are dropped implicitly.

Syntax

DROP USER <user name>

User name

User name specify an existing user in database.
Example

Drop User Marty

Above example drops an existing user ‘Marty’ from database.

Daffodil DB 147

Daffodil DB SQL Reference Guide

J2EE Certified

PSM

PSM stands for Persistent Stored Module. The purpose of PSM is to combine database language
and procedural programming language. PSM extends SQL by adding constructs found in
procedural languages, resulting in a structural language that is more powerful than SQL. The basic
unit in PSM is a block. All PSM programs are made up of blocks, which can be nested within each
other. PSM is structured into blocks and can use conditional statements, loops and branches to
control program flow. Variables can be scoped so that they are only visible within the block where
they are defined. PSM blocks come in three types; these are procedure, triggers and cursors. All of
these block types share most PSM features so during this tutorial the features that apply to all
block types will be grouped into single subjects. Typically, each block performs a logical action
in the program. A block has the following structure:

BEGIN

/* Declarative section: variables, types, and local subprograms. */
(Statements that make up the block)

DECLARE

/* Executable section: procedural and SQL statements go here. */
/* This is the only section of the block that is required. */
(Definition of any variables or objects that are used within the declared block.)

END;

(End of block marker.)

EXAMPLE OF PSM BLOCK IS :

create procedure ddbproc() specific s_ddbproc
begin
declare aa int;
setaa=11;
lab :
repeat
if aa=19 then
set aa = aa+1;
leave lab;
else
insert into student(studentid,studentname) values(aa,0);
end if;
set aa = aa+1;
until aa>=100
end repeat;
end

Daffodil DB 148

Daffodil DB SQL Reference Guide

J2EE Certified

EXAMPLE FOR NESTED BLOCK IS:

create procedure pl(in a int) specific p
as begin
begin
declare d int;
select studentid into d from student where studentid=10;
insert into teacher(employeeid,teachername) values(d+10,72’);
begin
declare d int;
set d=10;
set d=a+d;
insert into student(studentid,studentname) values(d,’a’);
end;
end;
end;

THE RULES OF BLOCK STRUCTURE ARE :-

Every unit of PSM must constitute a block. As a minimum there must be the delimiting words
BEGIN and END around the executable statements.

SELECT statements within PSM blocks are embedded SQL (an ANSI category). As such they
must return one row only. SELECT statements that return no rows or more than one row will
generate an error(but not in case of cursor). If you want to deal with groups of rows you must
place the returned data into a cursor. The INTO clause is mandatory for SELECT statements
within PSM blocks (which are not within a cursor definition), you must store the returned values
from a SELECT.

If PSM variables or objects are defined for use in a block then you must also have a DECLARE
section.

PSM blocks may be nested, nesting can occur wherever an executable statement could be placed
(including the declare section).

Daffodil DB 149

Daffodil DB SQL Reference Guide

J2EE Certified

Data Manipulation Language

Insert Statement

An INSERT statement creates a row or rows and stores them in the named table. The number of values
assigned in an INSERT statement must be the same as the number of specified or implied columns.

Syntax
INSERT INTO <insertion target> <insert columns and source>

<insertion target> ::=<table name> <insert columns and source> ::=<from subquery><from
constructor><from default>

<from subquery> ::= [<left paren> <insert column list> <right paren> | <query expression>

<from constructor> ::= [<left paren> <insert column list> <right paren>] <contextually typed
table value constructor>

<from default> ::= DEFAULT VALUES
<insert column list> ::= <column name list>

<contextually typed table value constructor> ::= VALUES <left paren> <Expression> [{
<comma> <Expression> }...] <right paren>

Table name
Table name is the name of a table in which the row will be inserted.
Insert Column list

Is a list of one or more columns in which data is to be inserted. Column list must be enclosed in
parentheses and delimited by commas. If a column is not in column list, Daffodil DB automatically
provides a value for the column if the column has a default value. If column list is specified then the
values inserted through the use of constructor or the SubQuery should come in the same order.

Contextually Type Value Constructor

Value Constructor specifies column values to be inserted in a table. There are two ways with
which we can specify column values to be inserted in a column. We can specify values for a
record of table or we can specify values for multiple records of a table like:

e Values (1, 2,’sapling’), specify 1, 2 and ‘sapling’ as the single record values. In this,
cardinality (i.e. no of columns) is 3.

e Values ((1, 2,’sapling’), (2, 3,’daffodil’), (3, 4, transport’)), specify values for 3 records.
In this, cardinality is 3.

Insert Columns and Source

There are 3 sources from which we can put values in the table through insert query.

From SubQuery

You can use the output from a SubQuery to insert values into the table specified by insertion
target. The following Constraints are applied

Daffodil DB 150

Daffodil DB SQL Reference Guide

J2EE Certified

From SubQuery includes Insert Column List as an Optional Rule. It means value of this rule can
be null or not null.

If insert column list is null then all the columns of the target table acts a target in which values are
to be inserted from the select list of columns of select query, provided cardinality of target table
(i.e. no of columns in target table) should be same as the cardinality of select query (i.e. no of
columns in the select list of select query) and columns descriptors i.e. data type of columns of
target table and select query should be the same.

If insert column list is not null then all the columns in insert column list acts a target in
which values are to be inserted from the select list of columns of select query, provided cardinality
of target table (i.e. no of columns in target table) should be same as the cardinality of select query
(i.e. no of columns in the select list of select query) and columns descriptors i.e. data type of
columns of target table and select query should be the same.

Example

In the example given below we insert values of columns subjectID, examID for studentID =
3.Values returned by the subquery acts as input to the insert to insert new values in the record.

INSERT INTO MarksRecord (subjectID, examID) (SELECT subjectID, examID FROM
MarksRecord WHERE StudentID = 3)

From Constructor

You can use the output from a value constructor to insert values into the table specified by
insertion target. The following Constraints are applied:

From Constructor includes Insert Column List as an Optional Rule. It means value of this rule can
be null or not null.

If insert column list is null then all the columns of the target table acts a target in which values are
to be inserted from the values in the constructor, provided cardinality of target table (i.e. no of
columns in target table) should be same as the cardinality of constructor (i.e. no of columns in the
value constructor) and columns descriptors i.e. data type of columns of target table and value
constructor should be the same.

If insert column list is not null then all the columns in insert column list acts a target in which
values are to be inserted from the value constructor, provided cardinality of target table (i.e. no of
columns in target table) should be same as the cardinality of value constructor (i.e. no of columns
in the value constructor) and columns descriptors i.e. data type of columns of target table and
value constructor should be the same.

Example

In the example given below we insert values in SUBJECT table through the use of constructor.
There must be one data value for each column in column list (if specified) or in the table. The
values list must be enclosed in parentheses. If the values in the VALUES list are not in the same
order as the columns in the table or do not have a value for each column in the table, column list
must be used to explicitly specify the column that stores each incoming value.

Insert into SUBJECT VALUES(10,Biology’)

For inserting values for more than one records at a time you have to use constructor within a
constructor.

Insert into SUBJECT values(21,’physics’),(31, chemistry’),(41,’geography’)

Daffodil DB 151

Daffodil DB SQL Reference Guide

J2EE Certified

In example given below default values inserted into the SCHOOL table. If default values does not
specified for the columns then NULL is inserted

Insert into SCHOOL VALUES(100, default, default, default, default)

Update Statement

UPDATE statement is used to modify existing data in a table. Data can be modified in a single
row, a group of rows or all the rows in a table. However, an UPDATE statement referencing a
table can change the data only in one base table at a time. The UPDATE statement does not affect
the row count of a table.

Syntax
UPDATE <target table> SET <set clause list>[WHERE <search condition>]

<target table> ::= [<left paren>] <table name> [<right paren>]

<set clause list> ::=<set clause> [{ <comma> <set clause> }... |
<set clause> ::= <update target> <equals operator> <update source>
<update target> ::= <column name>

<update source> ::=<expression>

<search condition> ::=<boolean expression>

Target Table

Target table is the name of the table to be updated.

Set Clause List

Set Clause List specifies the list of column or variable names to be updated. It specifies a list of
attribute value pairs separated by equals’ operator.

Update Target

Update Target is a Column name that contains the data to be changed. Column name must reside
in the table specified in the UPDATE clause.

Update source

It can be any valid SQL expression or a column. SQL Expression value or column value acts as
input value to be updated in the column.

Example

In the example given below table STUDENT is updated, the condition specified is the
StudentID=2 and value of the StudentName will be changed to 'Fleming' if the condition is met.

Update Student set StudentName='Fleming' where StudentID=2

In the example given below 2 columns are updated by the given values if the condition StudentID
=1 is met.

Update Student set StudentName= "Tony', Gender = 'F' where StudentID=1

Daffodil DB 152

Daffodil DB SQL Reference Guide

J2EE Certified

Delete Statement

Delete statement deletes one or more than one rows from a table depending upon the condition
specified by the user in the WHERE clause. If no condition is specified then all the rows in the
table are deleted.

Syntax

DELETE FROM «<target table> [WHERE <search condition>]<target table> ::= [<left paren>]
<table name> [<right paren>]

<search condition> ::=< Boolean Expression>

Target table

It is the name of the table from which the rows are to be removed.
WHERE

WHERE clause specifies the conditions used to limit the number of rows that is to be deleted.
Where Clause is Optional in Delete Statement, means either it can present or not. If a WHERE
clause is not supplied, DELETE removes all the rows from the table, else deletes the rows of table
according to condition specified.

Search Condition

It specifies the restricting condition for the rows to be deleted. There is no limit to the number of
predicates that can be included in a search condition.

The DELETE statement may fail if it violates a trigger or attempts to remove a row referenced by
data in another table with a FOREIGN KEY constraint. If the DELETE removes multiple rows,
and any one of the removed rows violates a trigger or constraint, the statement is cancelled, an
error is returned, and no rows are removed.

However, an empty table or view cannot be deleted from the database. To delete it from the
database, it must be explicitly removed using the DROP TABLE OR DROP VIEW statement.

Examples
Use DELETE with no parameters
This example deletes all rows from the Post table.

DELETE FROM Post

Use DELETE on a set of rows

This example deletes all rows in which ClassID is less than 6 from the classproperties table.
DELETE FROM classproperties where ClassID < 6

Use DELETE based on a SubQuery.

This example is used to delete records from Teacher table that is based on a IN predicate. It
removes rows from the Teacher table using a sub query that returns the post id related with post
name as Teacher’.

DELETE FROM Teacher WHERE PostID IN (SELECT PostID FROM Post WHERE
PostName = ’Teacher)

Daffodil DB 153

Daffodil DB SQL Reference Guide

J2EE Certified

Data Query and Control Language

Select Statement

The SELECT Statement is a DQL (Data Query Language). It queries the database and retrieves
rows from the database, thus allowing the selection of one or many rows or columns from one or
many tables.

Syntax

SELECT [<set quantifier>] [<top function>] <select list> <table expression>

<set quantifier> ::= DISTINCT | ALL

<select list> ::= <select sublist> [{ <comma> <select sublist> }...]

<table expression> ::=

<from clause>

[<where clause> |

[<group by clause> |

[<having clause>]

[<order by clause>]

<top function> ::= TOP <left paren> <unsigned integer> <right paren>

Select List

<select sublist> ::=<derived column> | <qualified asterisk>

<qualified asterisk> ::= <asterisk> | <asterisked identifier chain> <period> <asterisk>
<asterisked identifier chain> ::=<asterisked identifier> [{ <period> <asteriskedidentifier> }...]
<asterisked identifier> ::= <identifier>

<derived column> ::=<Expression> [<as clause> |

<as clause> ::= [AS] <column name>

Distinct/All

These are the optional set quantifiers. DISTINCT specifies the discarding of the duplicate records
when the two or more records in the selected columns are same. ALL, on the contrary returns all
the records including the duplicate records.

TOP Function

The TOP Function displays the top ‘n’ records from the result set, where ‘n’ is the argument
passed to the function.

Daffodil DB 154

Daffodil DB SQL Reference Guide

J2EE Certified

Select list
It is the list of the columns, separated by comma that the user wishes to retrieve. The Select list,
can be

e simply an asterisk, ‘*’ , to select all the columns of the table in the FROM clause.

e specific fields’ names to select selected columns.

® some expression using the aggregate functions or some operator, etc.

Table expression

Table Expression lists the source of the tables from which the columns specified in the <select
list> are to be retrieved as well as the conditions that are to be applied over them. Table
Expression can be formed of the various clauses as indicated i.e. FROM clause that is mandatory
and WHERE clause, GROUP BY clause, HAVING clause and ORDER BY clause that are
optional. These clauses will be explained in detail later.

Example 1

Select * from Subject

SubjectID SubjectName

1 Biology

2 English

3 Mathematics
4 Science

5 Social Studies

The above query lists all the records from the Subject table. This is specified by the asterisk, ‘*’,
which is used to select all the rows from the table specified. Here the quantifier is by default ALL.
This means all the records, irrespective of whether there are any redundant records, will be
displayed. The above result shows the first 5 rows.

Example 2

To specify explicitly, the listing of all the records, ALL can be used as shown, which is otherwise
same as the query above.

Select all * from Subject

Example 3

To remove the duplicate records the keyword DISTINCT is used as shown below, which will
again list all the records of the Subject Table, but this time after dropping the duplicates.

Select distinct * from Subject

SubjectID SubjectName
1 Biology

2 English

3 Mathematics
4 Science

5 Social Studies

Daffodil DB 155

Daffodil DB SQL Reference Guide

J2EE Certified

Here the result is same, because there are no duplicate columns.

Example 4

The following example results in the listing of the specified columns only.
Select StudentName, RollNumber, Gender from Student

Result

StudentName RollNumber Gender

Catherine 1001 F
John 1002 M
Cathe 1003 F
John 1004 M
Woll 1005 F

The above result shows the first five rows only.

Example 5
select TOP (5) (marks*100 /500) as Percentage, StudentID, SubjectID from MarksRecord

Result

Percentage Studentld SubjectID

19.6 1 1
17.4 1 2
19.8 1 3
15.6 1 4
10.4 1 5

The above query is another form of the SELECT queries, where we have used TOP function to
list the top 5 students from the list. To show the implementation of the mathematical expression in
SELECT statement, we have calculated the percentage taking the maximum marks as 500. Also
the column aliasing has been used in the query, where the first column has been renamed to
Percentage.

Example 6

The following query shows another way of column selection. Here all the columns of Teacher get
selected, but just one column of Post.

Select a.TeacherName, a.Salary, b.PostName from Teacher as a, Post as b where a.PostID = b.PostID

TeacherName Salary PostName

Mr. Agregado 10000 Principal

Mr. Brumfield 8500 Vice-Principal
Ms. McKelvey 6000 Teacher

Mr. Everett 6000 Teacher

Mr. Verstrepen 6000 Teacher

Here only the first five records of the query result have been shown.

Daffodil DB 156

Daffodil DB SQL Reference Guide

J2EE Certified

FROM CLAUSE

It specifies the tables, views, derived tables, and joined tables used in DELETE, SELECT, and
UPDATE statements. Based on the SELECT statement a few Examples involving FROM have
been already given. As a matter of fact, the FROM clause is mandatory in the SELECT statement.

Syntax

<from clause> ::= FROM <table reference list>
<table reference list> ::= <table reference> [{ <comma> <table reference> }... |
<table reference> ::= <table primary> | <joined table>

<table primary> ::=<table or query name> [[AS] <correlation name>]
<derived table> [AS] <correlation name>

I<left paren> <table reference> <right paren>

<derived table> ::= <table subquery>

<joined table> ::= <cross join> | <qualified join>

<cross join> ::= <table reference> CROSS JOIN <table reference>

<qualified join> ::= <table reference> [<outer join type> | JOIN <table reference><join
condition>

<outer join type> ::= LEFT | RIGHT | FULL
<join condition> ::= ON <search condition>
<search condition> ::= <Boolean Expression>
Table Reference

A list of one or more table or view names (separated by commas), from which the data value are to
be retrieved. Table reference can be Simple table or Joined table. The Joined Table is obtained as
a result of any join operations which will be discussed later.

Table Primary
Table Primary is formed of Table Name or the Query Name. Its represents tables, views, queries and
joins

Table or query name: includes name of the table from which we want to retrieve the data.We can
specify the name of table with its schema name or without schema name. If no schema name is
specified then ,the current schema is assumed.

Joined Table

It specifies the intermediate result table that is the result of either equi-join or an outer join. The
operators that could be applied are: CROSS JOIN, LEFT OUTER JOIN, RIGHT OUTER JOIN,
and FULL OUTER JOIN.

Joined Condition

It defines a search condition in which predicates can be combined.

Daffodil DB 157

Daffodil DB SQL Reference Guide

J2EE Certified

Examples
Some of the examples have already been discussed in the detailing of the SELECT statement.

Select ExamName, MaximumMarks, PassingMarks from Exam

Result

ExamName | MaximumMarks | PassingMarks
Final year 600 250

Half yearly 600 250

Sessionl 600 250

Session2 600 250

This query, which is the simplest of all, lists the Name of the Exam, Maximum Marks for the
exam and the passing marks of the Exam as the output. We can also select more than one table
from in the Table Reference List, the example for which is listed next

Select t. TeacherName,t.DateOfJoining,t.salary,p.PostID From Teacher as t, Post as p

Result

TeacherName DateOfJoining Salary PostID
Mr. Agregado 1996-04-17 10000 1

Mr. Brumfield 1997-07-01 8500 1

Ms. McKelvey 1998-09-25 6000 1

Mr. Everett 1998-10-25 6000 1

The result shows the first four rows of the result only.

The above query takes two tables in the from clause, but it is inefficient in the way that it lists out
all the records of the tables, i.e. displays the Cartesian Product of the two tables, which is not what
the user wants always. Here, though, only the first four records have been shown. The p.Postld
field shows the Cartesian product being carried out in the operation. This type of operations,
involving more than one table, need to be controlled. The next example shows exactly this, by
forcing the condition in the where clause.

select t.TeacherName, t.DateOfJoining, t.salary, p.PostID
from Teacher as t, Post as p

where t.PostID = p.PostID

Result

TeacherName DateOfJoining Salary PostID
Mr. Agregado 1996-04-17 10000 1

Mr. Brumfield 1997-07-01 8500 2

Ms. McKelvey 1998-09-25 6000 3

Mr. Everett 1998-10-25 6000 3

The above result shows the first 4 rows of the result.

Daffodil DB 158

Daffodil DB SQL Reference Guide

J2EE Certified

This is the improvised version of the previous query as it limits the output, and displays only those
records for which the Postld value of the tables is same. Such types of operations are also called
the JOIN operations. We can perform such operations using other keywords, like INNER JOIN,
LEFT JOIN etc., which we are going to discuss next.

JOIN OPERATION

As explained briefly in the above discussion,, there is a need to combine two or more tables for
the desired output many a times This leads to a correlation among the tables in the from clause.
This is exactly what JOIN does i.e., combining two or more tables to produce the expected results.
Join is performed whenever there are more than two tables in the from clause and frequently based
on the condition mentioned in the where clause. This condition is better known as join condition.

Without the condition, the join will take the form of Cartesian Product, resulting in all the
possible combinations of the involved tables. e.g. the join of two tables with 3 and 4 records
respectively, will result in the output of 12 (i.e. 4 X 3) records.

Cross join

The Cross Join logical operator joins each row from the first table with each row from the second
table. Thus it is the basic of all the joins and is not very efficient, but still illustrates the table
unification characteristic of all the joins.

Example:

Select Classes.*, Exam.ExamID, Exam.ExamName from Classes CROSS JOIN Exam

Result

ClassID ClassName SchoolName ExamID ExamName
1 6" 1 1 Final year

1 6" 1 2 Half yearly
1 6th 1 3 Sessionl

1 6" 1 4 Session2

2 70 1 1 Final year

This is the basic query for the cross join. Since the classes table consists of 3 entries and the exam
table consists of 4 entries, the cross join of the two will result in 12 entries, i.e. 4 X 3 entries. But
here, only the first five rows have been displayed.

Qualified join:

The qualified join further is categorized into
Left Outer Join/ Left Join.

Right Outer Join/ Right Join.

Full Outer Join/ Full Join.

Left Outer Join/ Left Join:

In this case all the rows of the Left table will appear at least once. The Left Outer Join logical
operator returns each row that satisfies the join condition between the Left table and the Right

Daffodil DB 159

Daffodil DB SQL Reference Guide

J2EE Certified

table. In case a row of Left Table does not match with any row of the Right Table, then the
corresponding record will still be displayed with Null value in the corresponding columns of the
Right Table.

Example

The left outer join can be exemplified by the same query. As already mentioned - applying the left
outer join outputs those values too, from the fable! which do not match to any value in the table2.

Select
StudentName, ClassName, RolINumber
From

Student LEFT OUTER JOIN Classes

on
Student.ClassID = Classes.ClassID

Result

StudentName ClassName RollNumber
Catherine 6th 1001

John 6" 1002

Cathe 6" 1003

John 6" 1004

Woll 6" 1005

Here again, only the first five rows have been displayed.
Right Outer Join/Right Join :

In this case all the rows of the Right table will appear at least once. The Right Outer Join/Right
Join logical operator returns each row that satisfies the join condition between the Left table and
the Right table. In case a row of Right Table does not match with any row of the Left Table, then
the corresponding record will still be displayed with Null value in the corresponding columns of
the Left Table.

Example:

Same query can be used to exemplify the Right Outer Join. But this time all the rows from the
second table are displayed at least once in the result. The rows for which there is no match in the
first table are displayed only once after being joined with Null value of the first table.

select

StudentName, ClassName, RollNumber
from

Student RIGHT OUTER JOIN Classes
on

Student.ClassID = Classes.ClassID

Daffodil DB 160

Daffodil DB SQL Reference Guide

J2EE Certified

Result

StudentName ClassName RollNumber
Catherine 6th 1001

John 6" 1002

Cathe 6" 1003

NULL gh NULL

In the result shown above, first three and the last row has been displayed. The last row shows that
for the value in the right table, which did not find any corresponding value in the left table; NULL
values are assigned for the corresponding left table values.

Full Outer Join/ Full Join:

The Full Outer Join logical operator returns each row satisfying the join predicate from the first
table joined with each row from the second table. It also returns rows from:

- the first table that had no matches in the second table.
- the second table that had no matches in the first table.
The input that does not contain the matching values is returned as a null value.
Example:
We consider the same query for the Full Outer Join as well.
select
StudentName, ClassName, RollNumber
from

Student FULL OUTER JOIN Classes

on
Student.ClassID = Classes.ClassID

Result

StudentName | ClassName | RollNumber
Catherine 6th 1001

John 6™ 1002

Cathe 6™ 1003

NULL g NULL

Here in the above shown result too, the first three and the last row of the result is displayed. The
last row shows that for the value in the right table, which did not find any corresponding value in
the left table, NULL values are assigned for the corresponding left table values.

Daffodil DB 161

Daffodil DB SQL Reference Guide

J2EE Certified

This time, all the rows of first table and second table are displayed as the result. The rows in the
first table or the second table which have no matching value in the corresponding table are
displayed only once, with the other table value being Null value, i.e. if there is some row in the
first table which has no match in the second table, is shown once in the result, with the
corresponding value of the second table being NULL and vice versa.

WHERE CLAUSE

A WHERE clause is an optional part of a SELECTstatement, DELETE statement, or UPDATE
statement. But whenever present, it follows the from clause and itself is followed by a Conditional
Expression. Thus it performs the job of filtering the rows from the tables listed in from clause, which
satisfy the following condition.

Syntax
<WHERE CLAUSE> ::= WHERE <search condition>

Search Condition

It defines the condition to be met by the rows to be returned. There is no limit to the number of
predicates in the search condition. The various operators that may be used in the conditional
expressions are “=", “<”,’<=", “>=", etc. Apart from these operators, we can have predicates like

IN predicate , Between predicate, Like Predicate , and so on , used to form the search condition.

Examples

select TeacherName, DateOfJoining, Salary from Teacher where EmployeelD <=3
Result

TeacherName DateOfJoining | Salary

Mr. Agregado 1996-04-17 10000

Mr. Brumfield 1997-07-01 8500

Ms. McKelvey 1998-09-25 6000

The above query outputs the Name of the Teacher, Date of Joining, and, Salary from the Teacher
table for the employees whose EmployeelD is less than or equal to 3.

To take another example involving the implication of the Condition on the string valued fields, the
query follows:

select StudentName, RolINumber from Student where StudentName like 'Ca%'

Result

StudentName | RollNumber
Catherine 1001

Cathe 1003

The above query lists the Names, Roll Numbers and Address of those students whose Name
begins with ‘Ca’. Thus, it will result in the output of two records. Here, like is the function that

Daffodil DB 162

Daffodil DB SQL Reference Guide

J2EE Certified

selects only those records where name begins with ‘Ca’. For obtaining specific values, the <field
name> of string type, can also be used using the ‘=" operator just like its use in case of Integer
field types.

select StudentName, RollNumber, StudentAddress from Student where StudentName = 'Catherine’

Result

StudentName | RollNumber | StudentAddress

Catherine 1001 1500

Warb........
select TeacherName,DateOfJoining,Salary from Teacher where Salary IN (8500,10000)
Result

TeacherName | DateOfJoining | Salary
Mr. Agregado | 1996-04-10 10000
Mr. Brumfield | 1997-07-01 8500

Clearly, the above query lists out the records of all the Teachers whose Salary is either 8500, or
10,000. The IN clause will be detailed later.

GROUP BY CLAUSE

A GROUP BY clause, part of a SELECT statement, groups a result into subsets that have
matching values for one or more columns. GROUP BY clause is optional and follows the
WHERE clause, and if WHERE clause is not present, it follows FROM clause. It operates on the
rows filtered by the WHERE clause. This clause performs the function of grouping the rows
based on the common values in the grouping columns. The GROUP BY clause restricts the rows
of the result set i.e, in each group, no two rows have the same value for the grouping column or
columns. NULLSs are considered equivalent for grouping purposes.

If several single row columns are in a query, GROUP BY returns exactly as many rows as there
are distinct sets of values in all the single row columns involved in the query. If these columns
have five sets of values, five rows will result.

You typically use a GROUP BY clause in conjunction with an aggregate expression.
Syntax

<group by clause> ::= GROUP BY <grouping specification>

<grouping specification> ::= <grouping set> [{ <comma> <grouping set> }...]

<grouping set> ::= <grouping column reference>

Daffodil DB 163

Daffodil DB SQL Reference Guide

J2EE Certified

Example

In the following query the grouping is done by the ClassID. It combines the Class table and the
Student table and counts the number of students in each class by grouping them with their ClassID
i.e. the result of the above query displays the number of students in class with ClassID = 1,
ClassID = 2 and so on.

select Classes.ClassID, COUNT(Student.StudentName) from Student, Classes where
Student.ClassID = Classes.ClassID group by Classes.ClassID

The COUNT function returns the count of the argument passed.

Result

ClassID COUNT
1 5

2 5

The following query calculates the average marks of students according to their StudentlD, i.e.,
average marks of all the students with STUDENTID = 1, average marks of all the students with
STUDENTID = 2, and so on.

select StudentID , Avg (Marks) as AVGS from Marksrecord Group By Studentld

Result

StudentID | AVGS
1 81.0

2 82.0

3 78.0

4 79.0

And in this way, average marks for the students grouped by their Studentld will be displayed.
Here only till the Studentld = 4, have been displayed.

HAVING CLAUSE

The HAVING clause specifies a search condition for the grouping and aggregate queries. In
Grouping Queries, it follows the GROUP BY clause. A HAVING clause restricts the results of a
GROUP BY in a SELECT statement. In Aggregate Queries, HAVING follows the WHERE
clause and if WHERE clause is missing, it follows the FROM clause..It is usually used in the
GROUP BY clause.

Like the WHERE clause, HAVING filters the query result rows. WHERE filters the rows from
the FROM clause and the HAVING clause filters the grouped rows or the aggregated rows.

Syntax
<having clause> ::= HAVING <search condition>

<search condition> ::= <Boolean Expression>

Daffodil DB 164

Daffodil DB SQL Reference Guide

J2EE Certified

Examples
select DateOfJoining, count(*) from Teacher Group By DateOfJoining, salary HAVING Salary <=85000

Result

DateOfJoining | COUNT

1996-04-17 1
1997-07-01 1

The above query first groups the result set by DateOfJoining and salary and then imposes the
condition of SALARY <= 8500, thus further filtering the final record set. The above result
contains just the first 2 rows of the result set.

UNION OPERATOR

The UNION operator derives a result table by combining two other result tables (for example
TABLEI and TABLE2) and eliminating any duplicate rows in the tables. When ALL is used with
UNION (that is, UNION ALL), duplicate rows are not eliminated. In either case, each row of the
derived table is a row from either TABLE1 or TABLE?2. By default, the Set Quantifier is
DISTINCT

Syntax
<query expression body> UNION [<set quantifier>] <query term>

<query expression body> ::= <non-join query expression> | <joined table>
<query primary> ::= <non-join query primary> | <joined table>
<set quantifier> ::= DISTINCT | ALL

According to the SQL standards, each corresponding column of both queries must have the same
column descriptor in order for two queries to be union-compatible.

Example

This operation results in the join with the shedding of the duplicates. The following query returns
the phone numbers of schools and students from School and Student tables.

select School.PhoneNumber FROM School
UNION
select Student.PhoneNumber FROM Student

Phone No.

(219) 248 — 8261
(408) 615 — 7297
(408)615-2250

1-828-675-
4262

Daffodil DB 165

Daffodil DB SQL Reference Guide

J2EE Certified

In the above result, first three and the last record is displayed.

If the ALL is used with UNION operator, it retains the duplicate records. The syntax for the
UNION with ALL though remains the same as shown in the following query.

select School.PhoneNumber FROM School
UNION ALL

select Student.PhoneNumber FROM Student
Result

Phone No.

1-828-675-4262
(408)615-2250
(408) 615 - 7297

(440) 238 -
7297

In this case, the result of the UNION queries, with the use of ALL or DISTINCT yields the same
result, because there are no duplicate records.

INTERSECT OPERATOR

The INTERSECT works opposite to the UNION operator. Unlike the UNION operator which
outputs the distinct records, the INTERSECT operator displays the records which are common for
both the queries. When ALL is used with INTERSECT (that is, INTERSECT ALL), duplicate rows
are not eliminated. In either case, each row of the derived table is a row from either TABLEI1 or
TABLE2. By default, the Set Quantifier is DISTINCT

Syntax
<query expression body> INTERSECT [<set quantifier>] <query primary>

<query expression body> ::= <non-join query expression> | <joined table>
<query primary> ::= <non-join query primary> | <joined table>

<set quantifier> ::= DISTINCT | ALL

Example

select ClassID from Classes

INTERSECT

Select ClassID from Student

Result

ClassID

1
2

Daffodil DB 166

Daffodil DB SQL Reference Guide

J2EE Certified

The above query displays the results in which the ClassID field have same values for both the
tables. If ALL is used with INTERSECT operator, it retains the duplicate records. The syntax for
the INTERSECT with ALL though remains the same as shown in the following query.

select SubjectID from ClassProperties
INTERSECT ALL

select SubjectID from Marksrecord
Result

SubjectID
1

1
1
1

6
6
6

Because of the ALL keyword, after performing the INTERSECT, the lesser number of copies of
the records with same value, from either of the two tables, are displayed. In the above query ,
since, the number of records with value 2, in the ClassProperties is more than the number of
records with the same value in the Marksrecord, in the final result, three records are displayed.

ORDER BY

The ORDER BY clause is an optional element of a SELECT statement which allows you to
specify the order in which rows appear in the Result Set.

The rows are sorted first according to the first column specified in the Order By clause. If there are
any duplicate values for this column, then the duplicate rows are sorted on the second
column(within the first column sort) in the Order By list , and so on. ASC and DESC request the
sorting in Ascending and Descending order respectively. By default, the values are sorted in
Ascending Order.

Syntax
<order by clause> ::= ORDER BY <sort specification list>
<sort specification list> ::= <sort specification>
[{ <comma> <sort specification> }... |
<sort specification> ::= < expression > [<ordering specification>]

<ordering specification> ::= ASC | DESC

Daffodil DB 167

Daffodil DB SQL Reference Guide

J2EE Certified

Sort specification list:

Sort Specification list consist of the column names by which the ordering needs to be done.

Example

select Studentld, RollNumber from Student Order By RollNumber
Result

StudentID | RollNumber

1 1001

2 1002

3 1003

4 1004

The result shows first four records satisfying above query.

The above query, being the simplest one, lists the ID and Roll Numbers of the Students from the
STUDENT table. The result will be sorted by Roll Number in the Ascending order, by default.

Select Studentld, StudentName,
RollNumber from Student

Where StudentName like Ca%’

Order By RollNumber DESC, StudentID

Result

StudentID | StudentName | RollNumber
3 Cathe 1003

1 Catherine 1001

This query lists the ID, Name and RollNumber of the students whose name starts with ‘Ca’. The
list is sorted by the RollNumber field in the Descending order and in case of duplicate records in
the RollNumber field; the duplicate rows are sorted in the Ascending order according to Studentld
field.

Daffodil DB 168

Daffodil DB SQL Reference Guide

J2EE Certified

ALIAS SUPPORT

Alias Support is extended in the queries with the use of ‘AS’. In a select expression, AS is used to
assign an alias to the column name in the select list and table name in the from clause.

Syntax

<as clause> ::= [AS] <column name>

Example

select TeacherName, DateOfJoining, DateOfBirth as DOB from Teacher
Result

TeacherName DateOfJoining | DOB
Mr. Agregado 1996-04-17 1965-04-10

Mr. Brumfield 1997-07-01 1966-11-27
Ms. McKelvey 1998-09-25 1968-01-07
Mr. Everett 1998-10-25 1968-01-17

The above query sorts the list of Teachers by their DateOfBirth, selecting the Name of the
Teacher, his/her Date of joining and Date of Birth. The DateOfBirth is aliased as DOB which is
then used in the Order By clause.

select a.EmployeelD as EmployeelD, a.DepartName as Department, b.PostName
from Teacher as a, Post as b

where a.PostID = b.PostID

Result

EmployeeID Department PostName

1 English Principal

2 Science Vice Principal
3 Science Teacher

4 Math Teacher

5 Computer Teacher

6 English Teacher

7 Social Studies Teacher

8 Biology Teacher

This query clearly shows the aliasing in the select statement as well as from clause.

Daffodil DB 169

Daffodil DB SQL Reference Guide

J2EE Certified

Comments Support

Daffodil DB supports Comments in SQL queries.

Syntax

<comment> ::= <simple comment> | <bracketed comment>

<simple comment> ::= <simple comment introducer> [<comment character>... | <newline>

<simple comment introducer> ::= <minus sign><minus sign>[<minus sign>...]

<bracketed comment> ::= <bracketed comment introducer> <bracketed comment contents>
<bracketed comment terminator>

<bracketed comment introducer> ::= /*

<bracketed comment terminator> ::= */

<bracketed comment contents> ::=

[{ <comment character> | <separator> }... |

<comment character> ::= <nonquote character> | <quote>

<newline> ::=;

Daffodil DB 170

Daffodil DB SQL Reference Guide

J2EE Certified

Two types of comment are supported in Daffodil DB.
1) Simple Comment

2) Bracketed Comment

Simple Comment: A Simple Comment starts with 2 <minus sign> (--) and terminated with a
semicolon (;). Examples of Simple Comments are

Select * From --This is a Select Query Selecting All Records of a Table Student; Student
Delete From —Name of table; Student where —Condition for Delete; Studentid<10

Bracketed Comment: A Bracketed Comment starts with a <solidus> (/) immediately followed by a
<asterisk> (¥) i.e. /* and terminated with <asterisk> immediately followed by a <solidus> i.e. */.
Examples of Bracketed comments are

Select * From /* This is a Select Query Selecting
All Records of a Table Student */ Student

Update Student /* Set name of student to John where Studentid is 10 */ Set StudentName = ‘John’
where Studentid =10

Daffodil DB 171

Daffodil DB SQL Reference Guide

J2EE Certified

Call Statement

Call statement is used to invoke the SQL stored procedure.

Syntax

<call statement> ::= CALL <routine invocation>

<routine invocation> ::= <routine name> <SQL argument list>

<SQL argument list> ::=

<left paren> [<SQL argument> [{ <comma> <SQL argument> }... |] <right paren>
SOL Argument

SQL Argument is any valid SQL Expression.

Call Statement will automatically search for the matching SQL stored procedure. Matching
stored procedure means the procedure that has the same name and matching <SQL argument list>.

Example
This is an example of CALL statement to execute the previously defined SQL stored procedures.

CALL Student_row_insert (11,5john’,111,’'m’,xyz’,24245°,1)CALL Modify_Teacher_Salary
(1,12000)CALL Student_Mark_InOut_Proc (5)

Daffodil DB 172

Daffodil DB SQL Reference Guide

J2EE Certified

Session and Transaction Control Statements

Set Transaction Statement

This statement is used to define the Isolation Level.

Syntax

SET <transaction characteristics><transaction characteristics>::= TRANSACTION <transaction
mode> [{ <comma> <transaction mode> }... |}

Transaction Mode

Transaction mode can be Read Only and Read Write. In Read Only, we can only perform DQL
(Data Query Language) Statements. In Read Write Mode, we can perform all the SQL Statements.
A Transaction mode can also be used to set the various isolation levels like Read Committed,
Read Uncommitted etc.

Example
Set Transaction Isolation Level READ COMMITTED

In the above example, we set the Transaction Isolation Level to READ COMMITTED.

Savepoint Statement

This statement is used to set a save point, or marker, within a transaction.
Syntax
SAVEPOINT <savepoint-name>

The Savepoint defines a location to which a transaction can return if part of the transaction is
conditionally cancelled. If a transaction is rolled back to a savepoint, it must proceed to
completion, or it must be cancelled altogether (by rolling the transaction back to its beginning). To
cancel an entire transaction, use the form:

ROLLBACK

All the statements or procedures of the transaction are undone until last commit.

Commit Statement

The COMMIT statement successfully terminates a Daffodil DB transaction.
Syntax

The COMMIT statement is used to end the current transaction and make permanent all changes
performed in the transaction. The COMMIT statement successfully finishes a transaction. This
statement also erases all savepoints in the transaction.

You cannot roll back a transaction after a COMMIT statement is issued because the data
modifications have been made a permanent part of the database.

Daffodil DB 173

Daffodil DB SQL Reference Guide

J2EE Certified

Rollback Statement

Rollback statement will undo all the changes made since the last completed Transaction i.e. since
the last COMMIT or ROLLBACK statement called.

Syntax
ROLLBACK [WORK] [TO SAVEPOINT <Savepoint-Name>]

Rollback erases all data modifications made since the start of the transaction or to a Save point. It
also frees resources held by the transaction. ROLLBACK without a Savepoint_name rolls back to
the beginning of the transaction. A transaction cannot be rolled back after a COMMIT statement is
executed.
Example

ROLLBACK to SAVEPOINT save_point1

Above example rollbacks all changes or data modifications made since the start of the transaction
to a save point name save_pointl.

ROLLBACK WORK

Above example rollbacks all changes to the beginning of the transaction.

Set Session Authorization

This statement is used to change the current user in session to another user.

Syntax

<set session user identifier statement>::= SET SESSION AUTHORIZATION <value
specification><value specification> ::= <literal> | <general value specification>

Literal
Literal can be only Character String Literal. No other types are allowed

General Value Specification

Value specification can only return a valid user-name or a valid roll-name, if user-name or roll-
name does not exist in database then error is thrown. If we specify the values as current Date,
current Database, current user and current time, then the function will throw an exception. Specify
one or more values, host parameters, or SQL parameters.

Example
SET SESSION AUTHORIZATION administrator

Suppose a user ‘daffodil’ is connected to the database, after executing the above statement current
user will change to ‘administrator’.

Daffodil DB 174

Daffodil DB SQL Reference Guide

J2EE Certified

Set Session Characteristics Statement

The SET SESSION CHARACTERISTICS statement is used to set one or more characteristics for
the current SQL session. Characteristics include transaction modes read only, read write and
isolation levels.

Syntax

<set session characteristics statement>::=SET SESSION CHARACTERISTICS AS <session
characteristiclist><session characteristic list> ::=<session characteristic> [{ <comma> <session
characteristic> }...]<session characteristic> ::=<transaction characteristics><transaction
characteristics> ::= TRANSACTION <transaction mode> [{<comma> <transaction mode> }... |

Session Characteristic List

Session Characteristics List is a collection of session characteristics separated by commas. Session
Characteristics is in turn a transaction characteristic.

Transaction List
Transaction List is a collection of transaction modes separated by commas.
Transaction Mode

A Transaction mode can be Read Only and Read Write. In Read Only, we can only perform DQL
Statements. In Read Write Mode, we can perform all the SQL Statements. A Transaction mode
can also be used to set the various isolation levels.

Example

SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL
SERIALIZABLE, READ ONLY

After execution of this statement the isolation level of session is set to SERIALIZABLE and mode
is set to READ ONLY.

Daffodil DB 175

Daffodil DB SQL Reference Guide

J2EE Certified

SQL Security and Privileges

Schemas are used for controlling security in Daffodil DB. When creating a user, they do not have
any access privileges to schemas of other users or other data objects within the database. The
Daffodil DB RDBMS only permits the schema or database owner to grant privileges on the data
objects within the schema.

Users can grant privileges to the following data objects in the schema:

e Tables

e Columns

® Roles

e SQL Procedures

e Domain

The following table describes the privileges that users can grant to other users for tables and

columns.

DELETE Allows a user to delete rows from tables within
the schema

INSERT Allows a user to insert rows of data into tables

within the schema
REFERENCES | Allows a user to set up references to primary keys
within the schema

SELECT Allows a user to select rows from tables within the
schema

TRIGGER Allows a user to create triggers on tables within
the schema

UPDATE Allows a user to update rows in tables within the
schema

Predefined User

Daffodil DB provides you with a predefined user (default user). User name and password of
default user are —

User Name — PUBLIC
Password — PUBLIC

Default user i.e. “PUBLIC” can perform following operation with the database.
Connect to the database
Access the objects having rights to PUBLIC.

Daffodil DB 176

Daffodil DB SQL Reference Guide

J2EE Certified

Granting and Revoking Privileges to Users

When you initially create a Daffodil DB database, it automatically creates a default user with a
password “PUBLIC”. The user created owns the default schema USER. For security reasons,
Daffodil DB does not recommend using this schema to store sensitive data.

Like any other user, default user must be granted the appropriate privileges to access data objects
in schemas owned by other users. Current user will own any new schema that is created unless
otherwise specified while creating the schema. New users are then able to create their own new
schema and grant appropriate privileges on objects in the schema that they own. All new users
must be granted privileges to access the objects in the USER schema, if this is required. To grant
the ability for a user to pass a privilege on to other users, you must specify the optional WITH
GRANT OPTION qualifier when granting the privilege.

Grant Statement

Use the GRANT statement to grant privileges on a data object.

Syntax

GRANT <privileges> TO <grantee> [{ <comma> <grantee> }...] [WITH GRANT OPTION] [
GRANTED BY <grantor> |

<Privilege> ::= <object privileges> ON <object name>
<object privileges> ::= ALL PRIVILEGES | <action> [{ <comma> <action> }... |

<object name> ::= [TABLE] <table name> | DOMAIN <domain name> | <specific routine
designator>

<action>:: =

SELECT

| SELECT <left paren> <privilege column list> <right paren>

| DELETE

I INSERT [<left paren> <privilege column list> <right paren>]

| UPDATE [<left paren> <privilege column list> <right paren> |
| REFERENCES [<left paren> <privilege column list> <right paren>]
| USAGE

| TRIGGER

| EXECUTE

<grantor> ::= CURRENT_USER | CURRENT_ROLE

<grantee> ::= PUBLIC | <authorization identifier>

Daffodil DB 177

Daffodil DB SQL Reference Guide

J2EE Certified

e If you do not include one or more of these privileges in the GRANT statement, an error
will be raised.

e If the optional “column-names” are not specified for the SELECT, INSERT, UPDATE,
REFERENCES and TRIGGER privileges, the GRANT is a table-level grant that allows
access to all present and future columns of the table.

e If you execute a GRANT statement that contains privileges that you don’t have or for
which you do not have the right to grant, then an error occurs.

® You may only grant the EXECUTE privilege on an SQL Procedure.

e If you do not specify WITH GRANT OPTION, the user cannot pass the same privilege on
to other users. However, if you do specify WITH GRANT OPTION, you have given the
user permission to pass on the privilege to other users.

e (Qranting a privilege to PUBLIC grants the privilege to all present and future users.
PUBLIC is a keyword, representing all users in the database.

e If you grant a privilege twice, and one of the times—either first or second—you granted
the optional WITH GRANT OPTION and the other time you granted it without the grant
option, the user will retain the grant option.

o If GRANTED BY <grantor> is not specified, then the grantor is the CURRENT_USER.

Example 1
The following statement grants SELECT privilege on the TEACHER table to the user USERI.

GRANT SELECT ON teacher TO userl

Example 2

Following GRANT statement allows the user ‘USER2’ to delete, insert and update rows from the
TEACHER table; it also allows this user to grant same privileges to others.

GRANT DELETE,INSERT,UPDATE ON teacher TO user2 WITH GRANT OPTION

Example 3

Following GRANT statement allows the user ‘USER3’ to have ALL PRIVILEGES on the table
TEACHER. However, the user ‘USER3’ will only be granted privileges that the user granting
privileges has the rights to grant.

For example, if a user granting the privileges does not have right to grant DELETE privileges, the
USER3 will not have the delete privilege.

GRANT ALL PRIVILEGES ON teacher TO user3

Example 4

Following GRANT statement allows the user ‘USER2’ to create trigger on TEACHER table; it
also allows this user to grant same privileges to others.

GRANT TRIGGER ON teacher TO user2 WITH GRANT OPTION

Daffodil DB 178

Daffodil DB SQL Reference Guide

J2EE Certified

Example 5

Following GRANT statement allows the user ‘USER2’ to use TEACHER table as referenced table;
it also allows this user to grant same privileges to others.

GRANT REFERENCES ON teacher TO user2 WITH GRANT OPTION

Example 6

Following GRANT statement allows the users ‘USER2’ and ‘USER3’ to use infdom domain as a
data type in any object where domain can be used.

GRANT USAGE ON intdom TO user2, user3

Example 7

Following GRANT statement allows the users ‘USER1’ and ‘USER3’ to execute procedure
Modify_Teacher_Salary using call statement.

GRANT EXECUTE ON specific procedure Modify_Teacher_Salary TO userl, user3

Example 8

The following statement grants SELECT privileges on the ‘employeeld’ column and INSERT
privileges on the ‘postld’ column of TEACHER table to the user USER3.

GRANT SELECT (Employeeld), INSERT (Postld) ON teacher TO user3
Note: In above examples give different-different privileges on different-different objects to

existing users. Roles can also be assigned privileges for different-different objects in the place of
users.

Revoke Statement

Revoke Statement is used to revoke a role or a privilege from a user.
Syntax
REVOKE [GRANT OPTION FOR] <privileges> FROM
<grantee> [{ <comma> <grantee> }...]
[GRANTED BY <grantor>]
<drop behavior>
<drop behavior>: CASCADE | RESTRICT

To revoke a role from a user, use the SQL command, REVOKE. This command revokes only the
privileges that the specified <grantor> granted to the <grantee>. If another <grantor> granted
the same privileges to the <grantee>, then the <grantee> will still have those privileges.

Note: - The syntax rule for the REVOKE syntax is similar to the GRANT statement. The major
difference is the additional RESTRICT or CASCADE keyword and the GRANT OPTION FOR
clause. The following describes the optional clauses GRANT OPTION FOR and RESTRICT or
CASCADE.

You may only revoke privileges, which you have granted.

Daffodil DB 179

Daffodil DB SQL Reference Guide

J2EE Certified

GRANT OPTION FOR

If the optional GRANT OPTION FOR clause is used, the WITH GRANT OPTION right is
revoked, but the actual privilege itself is not revoked then CASCADE and RESTRICT may be
used in the same way as the normal REVOKE statement.

RESTRICT | CASCADE

If you specify the RESTRICT keyword, only privilege granted by you, will be revoked from the
specified user. If the specified user had grant option and has granted the same privilege to other
users, then there will be an error. If you specify CASCADE, only the privileges granted by you,
will be revoked from the specified user or any other privileges dependent on your grant.

Example 1

Following statement revokes the SELECT privilege on the TEACHER table from the user USER1.
REVOKE SELECT ON teacher FROM user1 restrict

Example 2

The following REVOKE statement removes ALL PRIVILEGES from the user, USER3 on the
table TEACHER.

REVOKE ALL PRIVILEGES ON teacher from user3 restrict

Example 3

The following REVOKE statement revokes the select privileges on column ‘Employeeld’ and
insert privileges on column ‘Postld’ on the TEACHER table from the user ‘User3’.

REVOKE SELECT (Employeeld), INSERT (Postld) ON teacher from user3 restrict

Example 4

The following REVOKE statement revokes ‘grant option for’ ALL PRIVILEGES on the table
TEACHER from the user ‘User3’. After it user ‘User3’ could not grant any privileges on table
TEACHER to any existing user/role.

REVOKE GRANT OPTION FOR ALL PRIVILEGES ON teacher from user3 cascade
CREATE ROLE

Creates a role to which the privileges can be granted.

Syntax

CREATE ROLE <role_name> [WITH ADMIN <grantor>]
<grantor> ::= CURRENT_USER | CURRENT_ROLE

Daffodil DB 180

Daffodil DB SQL Reference Guide

J2EE Certified

role name

It is the name of the role you are creating. For <role_name>, you can not use any existing user
name and reserve words.

WITH ADMIN <grantor>

e [f WITH ADMIN <grantor> is not specified, then the grantor is the CURRENT_USER.
e [F WITH ADMIN CURRENT_ROLE is specified, then the CURRENT_ROLE must not
be NULL.

Examples
CREATE ROLE PRINCIPAL WITH ADMIN CURRENT_USER

If current user is USERI1, this will create a role called PRINCIPAL whose owner will be the user
USERI. Privileges can now be granted to the role PRINCIPAL. The user USER1 can then grant
this role PRINCIPAL to other users, or to other roles. Once the role is granted to the users or to
other roles, these users and roles will have same level of privileges as was granted to the role
PRINCIPAL.

GRANT ROLE

Use GRANT ROLE statement to grant role to users or to other roles.

Syntax

GRANT <role_name> [{, <role_name>} ...]

TO <grantee> [{ , <grantee>} ...]

[WITH ADMIN OPTION]

[GRANTED BY <grantor>]

<grantee> ::= PUBLIC | <authorization identifier>
<grantor> = CURRENT_USER | CURRENT_ROLE

role name
It is the name of the role to be granted. You may grant more than one role.

Grantee
¢ A role can be granted to users or to other roles.
¢ You cannot grant a role to itself.
® You cannot grant one role to a second role, and then attempt to grant the second role back
to the first. For example, you can grant Role (A) to Role (B) or Role (B) to Role (A), but
not both. Such a series of grants would result in a role grant cycle, which is not allowed.
e QGranting to PUBLIC grants the role to all present and future users and roles.

Daffodil DB 181

Daffodil DB SQL Reference Guide

J2EE Certified

WITH ADMIN OPTION

e If WITH ADMIN OPTION is specified, then the <grantee> can grant the role to other
users or roles.

e If you do not specify GRANTED BY <grantor>, then the grantor is the
CURRENT_USER.

e If you specify GRANTED BY CURRENT_ROLE, then the current role must not be
NULL.

Note: - To successfully execute this command, current users or roles must either be the role
owner. Or, the <grantor>s must have admin option for every role that they grant.

Examples

GRANT PRINCIPAL TO USER2
WITH ADMIN OPTION GRANTED BY CURRENT_USER

If current user is USER1:-

This will grant a role called PRINCIPAL (whose owner is the user USER1) to another user
USER?2 with admin option. The user USER?2 can grant the role PRINCIPAL to other users, or to
other roles, because the user USER2 has ‘with admin option’ for role PRINCIPAL.

REVOKE

Use REVOKE to revoke a role from a user or another role. This command revokes only the roles
that the specified <grantor> granted to the <grantee>.

Syntax

REVOKE [ADMIN OPTION FOR] <role_name> [{, <role_name>) ...]
FROM <grantee> [{, <grantee>} ...]

[GRANTED BY <grantor>]

<drop behavior>

<drop behavior> ::= CASCADE | RESTRICT

Please note that the syntax rule for the REVOKE syntax is similar to GRANT ROLE, except for
the following.

NOTE: You may only revoke roles, which you have granted.

ADMIN OPTION FOR

If ADMIN OPTION FOR is specified, then only the admin option for the role is revoked.

Daffodil DB 182

Daffodil DB SQL Reference Guide

J2EE Certified

Drop behavior

e If you specify the RESTRICT keyword, If the specified <grantee> had the ADMIN
OPTION and granted the same privilege to other users, then privileges will be retained
otherwise revoked.

e If you specify CASCADE, only the role granted by you, will be revoked from the
specified <grantee> and any other roles dependent on your grant.

Examples

REVOKE PRINCIPAL from USER3 restrict

If the current user is Marty:
This will revoke a role called PRINCIPAL (whose owner is the user Marty) from USER3.

REVOKE ADMIN OPTION FOR PRINCIPAL from USER2 granted by CURRENT_USER
cascade

If the current user is USER1:
This will revoke a role called PRINCIPAL (whose owner is the user USER1) from USER2.
DROP ROLE

Used to drop an existing role. To successfully execute this command, the current user must be a
user who is the owner of the role.

Syntax
DROP ROLE <role_name>

Examples

DROP ROLE URole

If the current user is USER1:
This will drop the role called URole whose owner is the USER1 (Role owner).

NOTE: You may only drop roles, which you have created.
SET ROLE
Syntax

SET ROLE <role_name>
| NONE

Daffodil DB 183

Daffodil DB SQL Reference Guide

J2EE Certified

Usage Notes
e To successfully execute this command, the current user must be the role owner, or a user

granted to use this role.

e This statement will set the current role for the current user to either the role specified or to
the null value if NONE is specified.

Example 1

The following statement will set the role ‘Principal’ and after that only those schema objects could
be accessed, for which the roles have been set for.

SET ROLE PRINCIPAL

Appendix

1. Error Messages

DSE0={0}
DSE12=Access denied. Do not have 'CREATE or DROP’ permission.

DSE14=An aggregate may not appear in the where clause unless it is in a subquery contained in a
having clause or a SELECT list, and the being aggregated is an OUTER reference.

DSE15=0LD and NEW alias name cannot be identical.

DSE16=Function {0} not supported.

DSE17=Ambiguous column name {0}.

DSE22=Feature {0} not supported.

DSE27=Insufficient privileges.

DSE28=In auto commit mode.

DSE35=Syntax error converting data type {0} to {1}.

DSE40=Cannot concatenate character data type value {0} to byte data type value {1}.
DSES85=Cannot call Statement.executeUpdate() with this query.

DSE86=Cannot call Statement.executeQuery() with this query.

DSES87=Syntax error converting data type {0} to {1}.

Daffodil DB 184

Daffodil DB SQL Reference Guide

J2EE Certified

DSE103=Cannot concatenate date with date.

DSE104=View or function {0} is not updatable because it contains aggregates.
DSE105=Cannot execute query through execute query method.

DSE146=Cannot read from the input stream.

DSE191=Cannot be dropped as this procedure is being referred by some other procedure.
DSE198=Cannot define the SQL data access as no-SQL.

DSE200=A routine definition can have at most one <deterministic characteristic>.
DSE201=A routine definition can have at most one <SQL-data access indication>.
DSE202=A routine definition can have at most one <dynamic result sets characteristic>.
DSE203=A routine definition can have at most one <specific name>.

DSE205=A routine definition can have at most one <language clause>.

DSE206=A routine definition can have at most one <parameter style clause>.
DSE210=Cannot specify <parameter mode> in function definition.

DSE212=Cannot use name and index in same statement.

DSE213=Cardinality cannot be greater than one.

DSE214=Cardinality does not match.

DSE224=Catalog name in constraint definition does not match catalog of table defintion.
DSE225=Catalog name can not be changed as table name or schema name does not exist.
DSE226=Catalog name in schema definition and table definition for table {0} does not match.
DSE227=Catalog name in the view definition is not matching with that of schema definition.
DSE228=Catalog name of the trigger definition is not matching with that of schema definition.
DSE231=Character string type can not be null.

DSE232=Characteristics cannot be null.

DSE235=Check constraint definition does not exist.

Daffodil DB 185

Daffodil DB SQL Reference Guide

J2EE Certified

DSE236=Check option cannot be specified with recursive view type.

DSE237=Check the code.

DSE239=Check datatype called from Boolean value expression and Boolean value expression.
DSE242=Callable statements are not supported.

DSE243=Collate clause can not specified for non-character column type.

DSE250=Column names in each table must be unique. Column name {0} in table {1} is specified
more than once.

DSE251=ALTER TABLE DROP COLUMN statement failed because column {0} does not exist in
table {1}.

DSE252=ALTER TABLE DROP COLUMN statement failed because {0} is the only data column in
table {1}. A table must have at least one data column.

DSE255=Column name {0} does not exist in target table {1}.
DSE256=Invalid column name(s) {0}.

DSE260=Invalid column name(s) {0} in Group by clause.
DSE262=Column type not set.

DSE264=Column descriptor does not exist. TABLE CATALOG {0} TABLE SCHEMA {1} TABLE
NAME {2} COLUMN NAME {3} PRIVILEGE TYPE {4}.

DSE265=Table descriptor does not exist. TABLE CATALOG {0} TABLE SCHEMA {1} TABLE
NAME {2} PRIVILEGE TYPE {3}.

DSE266=Column {0} does not exist in table {1}.
DSE267=Column name {0} passed with value {1}.
DSE269=Column name specified in columnlist is not present.
DSE270=Columns corresponding to the constraint not found {0}.

DSE272=Cannot use duplicate column names in index key list. Column name {0} listed more than
once.

DSE273=Columns specified in trigger column list are not unique.

DSE274=Trigger {0} uses the invalid column/columns {1} in trigger column list.

Daffodil DB 186

Daffodil DB SQL Reference Guide

J2EE Certified

DSE275=Commit action can not be specified with type {0}.
DSE276=Commit is not allowed with read uncommitted level.
DSE279=Connection already closed.

DSE286={0} is not a constraint.

DSE287=Non deferrable constraint.

DSE288=ALTER TABLE DROP CONSTRAINT statement failed because constraint {0} is being
referenced foreign key constraint {1}.

DSE289=Unique constraint referred by the referencing column should not be deferrable.
DSE294=Current row is not valid.

DSE295=Data cannot be loaded.

DSE297=Invalid data.

DSE301=Data not loaded in the {0} descriptor.

DSE306=Data not valid.

DSE310=Data type descriptor does not have any rows.

DSE316=Database {0} does not exist.

DSE314=Database {0} already exists.

DSE319=Data type should be of character type in case collate clause is specified.
DSE323=Default value of the domain descriptor is not set.

DSE324=Definition of rule {0} is not found.

DSE325=Degree can not be greater than one.

DSE326=Degree is exceeding to one in between predicate.

DSE330=Deletion is not allowed with read uncommitted level.

DSE334=Divide by zero error encountered.

DSE336=Domain constraint descriptor not loaded.

DSE337=Domain definition does not exist.

Daffodil DB 187

Daffodil DB SQL Reference Guide

J2EE Certified

DSE338=Domain descriptor not set.

DSE339=Domainconstraint does not exist. Catalog: {0} schema: {1} constraint: {2}.
DSE340=Do not have permission to {0} the table {1}.

DSE342=Do not have any permission to SELECT a row.

DSE355=Error while getting the connection.

DSE356=Error in reading the stream.

DSE358=Exception.

DSE382=INSERT statement conflicted with FOREIGN KEY constraint {0}. The conflict occurred in
table {1}.

DSE390=Global session not set.

DSE393=exception not handled correctly.

out-of-range datetime value.

DSE396={0} specified should be between {1} and {2}.
DSE401=Illegal call.

DSE402=Illegal call for condition: {0}.

DSE408=Illegal condition for join retriever optimal {0}.
DSE410=Database is incompatible, might be created in higher version.
DSE411=Illegal method call.

DSE412=Illegal multiplier passed {0}.

DSE413=Illegal timestamp denometer {0}.

DSE415=Invalid fetch direction. In case of type forward, only fetch forward is valid direction.
DSE416=Incompatible type {0}.

DSE419=Illegal/invalid argument passed in function {0}.
DSE478=Index cannot be maintained on column of type {0}.

DSE479=Index passed [{0}] must be >0 && <= {1}.

Daffodil DB 188

Daffodil DB SQL Reference Guide

J2EE Certified

DSE482=Cannot find Index name {0}.

DSE483=Cannot defer a constraint that is not deferrable.
DSE484=Insert failed.

DSE487=Insertion is not allowed with read uncommitted level.
DSE489=Integrity constraint violation.

DSE492=Internal error data type descriptor is not set or is null.
DSE493=Internal error: columndescriptor not set.
DSE494=Internal exception: table descriptor not initialized.
DSE495=Internal exception: schema descriptor not set.
DSE496=Internal exception: column descriptor not set.
DSES04=Invalid column.

DSE505=Invalid column index: {0}.

DSE508=Invalid column name {0}.

DSES11=Invalid concurrency {0}.

DSES513=Invalid data passed.

DSES14=Invalid data type {0}.

DSES15=Cannot find data type/domain {0}.
DSES517=Invalid default option <{0}> {1}.
DSES18=Invalid fetch size.

DSE520=Invalid grantor.

DSE523=Invalid log file.

DSES24=Invalid logging level.

DSES525=Invalid method call.

DSES526=Invalid no of columns in function.

Daffodil DB 189

Daffodil DB SQL Reference Guide

J2EE Certified

DSES527=Invalid number {0}.

DSES28=Invalid operator {0}.

DSES529=Invalid operator (-) for string manipulation.
DSE530=Invalid quantifier {0}.

DSES31=Invalid query.

DSES532=Invalid query to execute.
DSES533=Invalid query to execute update method.
DSES36=Invalid result from server.
DSES537=Syntax error converting datetime from character string.
DSES538=Invalid URL.

DSES540=This feature is not supported in ONE$DB.
DSES541=Invalid value for fetch direction: {0}.
DSES542=Invalid value for holdability {0}.
DSE543=Invalid value for isolation level {0}.
DSE545=Invalid value passed for maxrows {0}.
DSES548=Iterator is not at valid row.

DSES50=Key can not be null.

DSES552=Key does not exist {0}.

DSES54=Key passed is null.

DSES555=Keys cannot be null keyl {0} key2 {1}.
DSES558=Length cannot be null.

DSES62=List is empty.

DSES563=Locator not allowed in procedures.

DSES565={0} not supported.

Daffodil DB 190

Daffodil DB SQL Reference Guide

J2EE Certified

DSES567=Method can not be called with parameters.

DSE715=Neither schema name nor authorization identifier specified.
DSE716=NEW ROW alias cannot be specified with DELETE type of event.
DSE717=NEW ROW cannot be specified without FOR EACH ROW.
DSE718=NEW TABLE alias cannot be specified with DELETE type of event.
DSE720=Next of {0} is null.

DSE721=Column name not set

DSE723=No data exists corresponding to the data.

DSE725=No getter method called before this call.

DSE728=Cannot find the procedure {0} which has {1} arguments.
DSE729=Cannot drop the procedure {0}, because it does not exist.

DSE731=The variable name {0} has already been declared. Variable names must be unique within a
stored procedure.

DSE732=No type available.

DSE736=Not a select query.

DSE737=Not a valid column.

DSE738=Not a valid direction {0}.

DSE740=Not a valid out parameter index {0} outparameters {1}.
DSE749=ColumnNames are null.

DSE750=Null not allowed in this column.

DSE752=Number of columns in query expression and view column list are not equal.
DSE753=Procedure parameters mismatch.

DSE754=Number of values are not equal to number of columns
DSE756=0bject not convertible

DSE759=0bject privilege should be of usage type in this case

Daffodil DB 191

Daffodil DB SQL Reference Guide

J2EE Certified

DSE773=The value you entered is not consistent with the data type or length of the column.

DSE775=01d or old row, new or new row, old table, and new table shall be specified at most once each
within the <old or new values alias list>.

DSE776=0Ild row alias can not be specified with insert type of event.
DSE777=01d row can not specified without for each row.
DSE778=0Id table alias can not be specified with insert type of event.
DSE784=Parameter passed is {0}.

DSE785=Parameters and values count does not match.
DSE786=Parameters are null.

DSE792=Parameterstyleclause cannot be specified in procedure statement.
DSE798=Position must be greater then 0.

DSE799=Precision {0} can not be greater maximum value {1}.
DSES804=Problem while checking for index table.

DSE806=Problem while creating the database.

DSE808=Problem in getting retriever for table.

DSES810=Problem in getting table {0}.

DSES812=Problem in getting the constraints of the table.
DSES813=Problem in run method of default option.

DSES818=Put quotes arround the values passed.

DSE819=Query not produced an update count.

DSE820=Query not produced ResultSet.

DSE822=Query expression not declared local temporary table.
DSES823=Query expression can not have target specifications.
DSES824=Query expression shall specify row type of element.

DSE825=Query failed.

Daffodil DB 192

Daffodil DB SQL Reference Guide

J2EE Certified

DSES828=Query is either null or empty.

DSES832=Query time out must be greater than 0. value passed is {0}.
DSES836=Range is exceeding {0} start position {1} is greater than length of blob {2}.
DSE841=Record is not present.

DSE848=Record number is exceeding the total number of records {0}.
DSE849=Record number {0} passed is deleted.

DSES851=Recursive shall be specified.

DSES853=Referenceable view specification can not be specified with recursive.
DSE857=Referential constraint definition does not exist.

DSE861=Restrict called from {0}.

DSES869=Result can be specified at most one time.

DSE870=ResultSet not updateable.

DSES871=ResultSet type is forward only.

DSES874=Invalid role specification.

DSES875=Role authorization descriptor does not exist. Role name: {0} grantee: {1}.
DSES876=Role/user {0} already exists in database.

DSES877=Rollback is not possible, not a valid session.

DSE879=Row is locked by another user.

DSES883=Rowset is read-only.

DSE884=Rsb of rsbi {0}, record.

DSE885=Rule name passed is {0}.

DSES887=Runtime exception: table descriptor not set.

DSE889=Save point {0} already exists.

DSE890=Invalid save point.

Daffodil DB 193

Daffodil DB SQL Reference Guide

J2EE Certified

DSE891=Scale {0} can not be greater maximum value {1}.
DSE&892=Scale {0} can not be greater precision {1}.

DSE893={0} scale can not be negative.

DSE895=Schema and catalog specified does not exist.

DSE896=Schema {0} does not exist.

DSE897=Schema in the constraint definition does not match schema of table.
DSE902=Schema name does not match with that of table {0}.
DSE903=Schema name does not match with that of view defintion.
DSE904=Schema name not specified.

DSE905=Schema name does not match with that of trigger defintion.
DSE906=Schema name’s domain definition does not match.
DSE907=Schema owned by {0} has not granted drop privilege to this user.
DSE915=Session does not exist.

DSE918={0} should contained either in aggregate function or group by columns.
DSE920=Should specify parameter name.

DSE925=Some problem.

DSE928=Specific name is already present in the schema.
DSE930=Specified table is not a base table {0}.
DSE931=Splitindexandnonindexconditions called from betweenpredicate.
DSE934=SQL invoked routines can only have execute privilege.
DSE937=Start position {0} is greater than the length of blobclob {1}.
DSE939=Start position {0} is greater than the length of blob {1}.
DSE940=Statement is closed.

DSE945=Sum or avg aggregate function can not accept character string as argument.

Daffodil DB 194

Daffodil DB SQL Reference Guide

J2EE Certified

DSE946=Syntax error.

DSE953=Systemfield {0} does not exist.

DSE954=Ambiguous table name {0}.

DSE955=Table cannot be a local temporary one.

DSE956=Table definition does not contain column definitions.
DSE957=Table definition does not contain table elements.
DSE958=Table definition does not contain table content source.
DSE959=Invalid object name {0}.

DSE962=Table is not a base table. Alter table not allowed.
DSE963=Table is of reference able type.

DSE964=Table is referenced from the check constraints, can not be dropped.
DSE970=Table name does not exist

DSE972=Temporary table should have all privileges.

DSE973=The data type should be of Character String type but is of {0}.
DSE974=The data type does not require scale.

DSE975=Length {0} of column {1} can not be less than 128 for default clause
DSE976=Cannot find the index name {0} on table {1}.

DSE977=The is no corresponding index columns.

DSE978=The key is not present.

DSE982=The key passed is null or invalid.

DSE983=The length {0} can not be greater than valid length {1}.
DSE985=The length {0} is greater than valid length {1}.

DSE986=The list is empty.

DSE987=The literal length {0} is greater than {1}.

Daffodil DB 195

Daffodil DB SQL Reference Guide

J2EE Certified

DSE989=The precision {0} is greater than valid precision {1}.
DSE991=The recordld {0} not an instance of query record.

DSE992=The record identity {0} not an instance of query record.
DSE994=The time precision {0} is greater than valid {1}.

DSE998=View {0} does not exist.

DSE999=There is no record corresponding to recordld {0}.
DSE1010=Transformgroupspecification cannot be specified in procedure statement.
DSE1012=You can specifiy trigger privilege only on base tables.
DSE1013=Trigger definition does not exist.

DSE1014=Trigger subject table is not a base table.

DSE1017=Truncated length {0} is greater than length of blobclob {1}.
DSE1018=Type {0}.

DSE1019=Inappropriate type {0}.

DSE1021=Type {0} not defined in database.

DSE1022=Type not registered.

DSE1024=mismatched type.

DSE1025=Types of table does not match.

DSE1026=Column {0} is not the same data type as referencing column {1}.
DSE1029=Unable to get the authorization identifier.

DSE1030=Unable to get the schema name.

DSE1032=Violation of UNIQUE KEY constraint {0}. Cannot insert duplicate key in object {1}.
DSE1036=Unsupported format.

DSE1037=Update cascade failed.

DSE1043=Update primary key returned by retriever cannot be null.

Daffodil DB 196

Daffodil DB SQL Reference Guide

J2EE Certified

DSE1046=Usageprivilegedescriptor does not exist. Grantor: {0} grantee {1} OBJECT_CATALOG:
{2} OBJECT_SCHEMA: {3} OBJECT_NAME {4} OBJECT_TYPE {5}.

DSE1047=User cannot be blank or _SYSTEM.

DSE1051=Value cannot be null.

DSE1066=View column list must be specified with recursive view type.
DSE1067=View definition does not exist.

DSE1075=Year must be between 9999 and -4713.

DSE1077=You cannot repeat a routine characteristic.

DSE1081=Illegal argument exception.

DSE1082=The column specified in view query is not valid.
DSE1083=Column {0} not allowed as constraint column. Type is {1}.
DSE1084=Cannot use connect in routine definition.

DSE1086=There are no primary or candidate keys in the referenced table {0} that match the
referencing column list in the foreign key {1}.

DSE1087=The length of check clause {0} is greater than the permitted length {1}.
DSE1088={0} is System Field; change the name of the column.

DSE1090=Create View failed because no column name was specified for functional column.
DSE1103=Length of escape character can not be greater than one.
DSE1104=Recordsetbuffer {0} record buffer {1}.

DSE1105={0} is not convertible in binary.

DSE1107=Problem in getting view characteristic.

DSE1108=Problem in getting column characteristidefc of table {0}.

DSE1109=Problem in getting default clause for table {0}.

DSE1110=Problem in getting unique constraint.

DSE1111=Problem in getting check constraints.

Daffodil DB 197

Daffodil DB SQL Reference Guide

J2EE Certified

DSE1112=Problem in getting trigger characteristics.
DSE1122=Problem in checking for has deferred constraints.
DSE1124=Update failed due to dataexception.

DSE1126=Delete failed due to retrievalexception.

DSE1128=Commit failed due to data exception.

DSE1129=Perform failed due to data exception.

DSE1130=Column {0} not found in characteristics of table {1}.
DSE1131=Column index {0} not found in characteristics of table {1}.
DSE1133={0} data type not supported.

DSE1134=Dependent privilege descriptor still exist.

DSE1135=There is already an object named {0} in the database.
DSE1136=Column {0} already exists in the table {1}.
DSE1137=There is already an object named {0} in the database.
DSE1138={0} type table privilege already exists for grantor {1} grantee {2} table {3}.

DSE1139={0} type column privilege already exists for grantor {1} grantee {2} table {3} column name
{4}.

DSE1141=Trigger with {0} name already exists.

DSE1142=There is already an index on table {1} named {0}.

DSE1143=Column {0} already exists for index {1} of table {2}.

DSE1144={0} domain already exists.

DSE1145=Domain constraint {0} already exists.

DSE1146=Schema {0} already exists.

DSE1147=Column {0} already exists for constraint {1}.

DSE1148={0} type usage privilege already exists for GRANTOR {1} GRANTEE {2} object {3}.

DSE1149={0} type routine privilege already exists for grantor {1} grantee {2} routine {3}.

Daffodil DB 198

Daffodil DB SQL Reference Guide

J2EE Certified

DSE1151=Grantee {0} already exists for role {1}.

DSE1152=Method specification already exists for SPECIFIC CATALOG {0} SPECIFIC SCHEMA
{1} SPECIFIC NAME {2}.

DSE1153=Number of values is not equal to number of parameters.
DSE1157=Parameters not set properly or not required.
DSE1160=Argument passing is not proper.

DSE1164=Updation is not allowed with read uncommitted level.
DSE1166=Passed object length {0} is more than {1}.
DSE1167=Required object of {0} passed {1}.

DSE1168=Property {0} of column index {1} contains invalid value {2}.
DSE1171=No such privilege descriptor found to delete.
DSE1172=Invalid privilege descriptor.

DSE1173=Some dependent entry exist.

DSE1174=Incorrect syntax at position {0} near {1}.

DSE1175=Problem in adding column {0}.

DSE1178=Time out {0}.

DSE1179=Catalog name is not same in object name {0} and schema descriptor {1}.
DSE1180=Schema and table descriptor both are set.

DSE1181=Granted or revoked privilege {0} is not compatible with object.
DSE1182=No action found in action list.

DSE1183=Table descriptor is null.

DSE1184=Access mode is read only.

DSE1199=Constraint cannot be created as data exists in table.
DSE1205=Cannot add multiple PRIMARY KEY constraints to table {0}.

DSE1206=File growth can be from 10 - 100 only is ?.

Daffodil DB 199

Daffodil DB SQL Reference Guide

J2EE Certified

DSE1207=Insufficient privileges to drop the database.
DSE1208=Invalid username/password.
DSE1209=Insufficient privileges.

DSE1210=User {0} with password {1} does not exist.
DSEI1211=Table is locked by another user.
DSE1214=Key is not valid.

DSE1216=Invalid status{0}.

DSE1219=Cannot insert in functional/aggregate columns.
DSE1249=Not a select query.

DSE1250=Cardinality for multiple rows is invalid.

DSE1251={0} statement conflicted with CHECK constraint {1} defined as {2}. the conflict occurred
in table {3}.

DSE1252=Length of columns {0} not equal to length of REFERENCES {1}.

DSE1254=Problem in firing replace event.

DSE1255=Violation of PRIMARY KEY constraint {0}. Cannot insert duplicate key in object {1}.
DSE1256=Insert error: column name or number of supplied VALUES does not match table definition.

DSE1257=The name {0} is not permitted in this context. Only constants, expressions, or variables
allowed here. Column names are not permitted.

DSE1258=Type of join applied in the query is not valid.

DSE1259=Some column has been updated with value not satisfying the query.
DSE1260=Cursor [{0}] already created in the current SQL SESSION.
DSE1261=Cursor {0} aready opened

DSE1262=Column cannot be of reference type.

DSE1263=Cannot UPDATE the CURSOR, CURSOR is not updatable.

DSE1267=Cannot perform INSERT/UPDATE/DELETE directly in a VIEW.

Daffodil DB 200

Daffodil DB SQL Reference Guide

J2EE Certified

DSE1269=Mismatch in length of columns and values.

DSE1270=The query is not valid.

DSE1271=The query does not support ORDER BY.

DSE1272=Non-updatable type of column in where clause,cannot INSERT/UPDATE in this query.
DSE1273=Value of some reference column not provided or invalid column in query.
DSE1274=Problem in Execution of Trigger For Table {0} While Performing Action [{1}] due to {2}.
DSE1275=Problem in Execution of Insert Statement for Table {0}.

DSE1276=Problem in Execution of Update Statement for Table {0}.

DSE1277=Problem in Execution of Delete Statement for Table {0}.

DSE1278=Referenced Constraint Violation [RESTRICT] for Table = {0} .

DSE1284=INSERT statement conflicted with FOREIGN KEY constraint {0} MATCH PARTIAL.
Cannot update the NULL values in all referencing column(s).

DSE1285=INSERT statement conflicted with FOREIGN KEY constraint {0} MATCH PARTIAL.
Cannot insert the NULL values in all referencing column(s).

DSE1286=DELETE statement conflicted with FOREIGN KEY constraint {0}. The conflict occurred
in table {1}.

DSE1287=Referenced constraint violation.

DSE1288=UPDATE statement conflicted with UNIQUE KEY constraint {0}. The conflict occurred in
table {1}.

DSE1289=UPDATE statement conflicted with PRIMARY KEY constraint {0}. The conflict occurred
in table {1}.

DSE1290=UPDATE statement conflicted with FOREIGN KEY constraint {0}. The conflict occurred
in table {1}.

DSE1291=Cannot insert the value NULL into column {0}, table {1}; column does not allow nulls.
INSERT failed.

DSE1292=Cannot update the value NULL into column {0}, table {1}; column does not allow nulls.
UPDATE failed.

DSE1293=Table name does not exist in mapping.

Daffodil DB 201

Daffodil DB SQL Reference Guide

J2EE Certified

DSE1294=TableDetails for table name {0} passed in event is not found.

DSE1295=There are {0} columns in the INSERT statement than values specified in the values clause.
the number of values in the VALUES clause must match the number of columns specified in the
INSERT statement.

DSE1300=Aggregate function cannot be used in the insert value.
DSE1301=Select statement can yield only one row.

DSE1303=Invalid column {0} has been used in trigger action for table {2}.
DSE1304=Invalid column for trigger specified in the trigger statement.
DSE1305=Primary or Unique column should be autoincremental.
DSE1306=Cannot insert a record with HASRecord columnvalue equal to false.
DSE1307=Target Specification cannot be null

DSE1308=Invalid user {0}

DSE1309=Invalid password

DSE2001=Now we have to insert record.

DSE2002=Key is not valid.

DSE2003=Record number {0} passed is deleted.

DSE2004=Record is not present.

DSE2005=Get the record from this location {0}.

DSE2006=Record is partial.

DSE2007=Record number is exceeding the total number of records {0}.
DSE2008=Key {0} value {1} pair not present.

DSE2009=Duplicate keys are not allowed.

DSE2010=Cluster is locked by another user.

DSE2012=Database is locked by another user.

DSE2013=Type {0}.

Daffodil DB 202

Daffodil DB SQL Reference Guide

J2EE Certified

DSE2014=Column does not exist {0}.

DSE2015=There is no default index on table {0}.

DSE2016=Error while updating the indexinfortable {0}.

DSE2017=Index {0} already exists for table {1}.

DSE2018=Number of values are not equal to number of columns.

DSE2019=lterator is at invalid position,1 : after last , -1 : before first.

DSE2023=Server is already closed {0}

DSE2025={0}.

DSE2027=Cannot add database with more than one file and numtifile support as FALSE.

DSE2028=Length of new files :: {0} initial size :: {1} increment factor is not possible with the
database files u r trying to ADD.

DSE2029=Initial size must be greater than size of file exist.
DSE2030=File size :: {0},initial size :: {1}, increment factor :: {2} not posssible.
DSE2031=Page Size is invalid.Valid range is 4k-32k.
DSE2032=Column not found : {0}.

DSE2034=Table is in use : {0}.

DSE2035=No index created in table : {0}.
DSE2036=Index already exist.

DSE2037=Table name found.

DSE2038=Element is deleted.

DSE2039=Node size should be greater than 2.
DSE2040=Index table not initialized.

DSE2041=NODE IS NONLEAF

DSE2042=NO Valid Key In Node

Daffodil DB 203

Daffodil DB SQL Reference Guide

J2EE Certified

DSE2043=POSITION PASSED IS GREATER THAN ELEMENT COUNT == POSITION {0} AND
ELEMENT COUNT {1}

DSE2044=SPLITTING WILL OCCUR NOW

DSE2045=BTree Can’t Give Value Of This Column

DSE2046=Database version is not Compatible

DSE2047=Increament Factor can’t be negative

DSE2048=Encryption key length can't be greater than 256

DSE2049=DatabaseName {0} contains illegal character.

DSE2050=Dead Lock Detected.

DSE2051=Either path specified for database or database name is too long which exceeds OS limits.
DSE2052=Transaction is active - Unable to set isolation level - First commit or rollback.
DSE2053=Cursor can not be declared without a procedure.

DSE2054={0} is not supported in one dollar db.

DSE3513=Type of iterator is not Updatable

DSE3514=Invalid Column {0} for table {1}

DSE3515=Column {0} Not Found in Mapping

DSE3516=Table {0} Does Not Exist In Mapping

DSE3517=Invalid Column {0}

DSE3518=Position of Iterator Not Initialised

DSE3519=Illegal Column Type

DSE3520=Value Of COlumn {0} Not Found in All Iterators

DSE3521=View Tables from SQI Hierarchy does not match fully with the Plan Hierarchy
DSE3522=Type Of Iterator {0} is not initialized

DSE3523=lllegal Call to Iterator

DSE3524=Clone not supported.

Daffodil DB 204

Daffodil DB SQL Reference Guide

J2EE Certified

DSE3526=Table {0} does not lie in plan hierarchy.

DSE3527=Cost not caculated for Condition {0}.

DSE3528= ? is not allowed in Order BY and Group By Clause

DSE3529=Either of joinlevelorder {0} and sIngletablelevelorder {1} should present.
DSE3530=Condition {0} not solvable on any plan.

DSE3531=Cost not calculated for this plan.

DSE3532=Listener is not supported in case of set operator and subquery.

DSE3533=Columnnames specified in from sub query and derived column list are not equal in length.
DSE3534=Alias name should be specified with aggregate/expressional or scalar functional columns.
DSE3535=Duplicate columns specified in from subQuery or view.

DSE3536=Aggregate columns cannot be present in onCondition.

DSE3537=Relation {0} does not belong to any plans.

DSE3538=Condition {0} can not be shifted to single table level.

DSE3539=Wrong event type {0} passed.

DSE3540=HasRecord column cannot be used in select list when group by is present.

DSE3541=A column has been specified more than once in the order by list. Columns in the order by
list must be unique.

DSE3542=Ambiguous column naming in select list.

DSE3543=0RDER BY items must appear in the select list if the statement contains a UNION
operator.

DSE3544=0rder Column {0} not present in selectList of query involving set operator.

DSE3545=The ORDER BY position number {0} is out of range of the number of items in the select
list.

DSE3546=HasRecord Column contains invalid table name {0}.
DSE3547=Condition {0} Execution Plan is not initialised.

DSE3548=Columns and their order should be equal in length.

Daffodil DB 205

Daffodil DB SQL Reference Guide

J2EE Certified

DSE3549=Data type and size is not initialized for scalar function.

DSE3550=? is not allowed in expression in selectlist

DSE3551=Aggregate COlumns cacnot be present for insertion in insert statement.
DSE3552=Invalid Count value inside Top funtion.

DSE3553=lIterator is at Invalid status.

DSE3554=Child length can not be more than {0}.

DSE3555=Reference {0} Value is not found.

DSE3556=Execution Plan not initialized for table {0}.

DSE3557=Column {0} does not exist in columncharacteristics of table {1}.
DSE3558=Columns present in Comparison Predicate is Not Equal to 2.
DSE3559=COlumns present in Comparison Predicate is Null.

DSE3560=Type of Aggregate function is not initialised.

DSE3561=Aggregate Function Quantifier type is not initialised.
DSE3562=References and Values passed are not equal in length.
DSE3563=Reference {0} not found in {1}.

DSE3564=Mapping is not proper intialized.

DSE3565=Inappropriate type in {0}

DSE3566=Having clause can not be given without any aggregate columns or group by
DSE3570=Invalid data type {O}.

DSE3571=Collator of column {0} and column {1} does not match, hence we cannot compare
DSE3572=No Proper Comparator...data type 1 {0} data type 2 {1}

DSE3573=No value found for Parameter Name {0}

DSE3574=All column selected.

DSE3575=InComparable DataType {0}

Daffodil DB 206

Daffodil DB SQL Reference Guide

J2EE Certified

DSE3576=Column {0} used in NATURAL join cannot have qualifier
DSE3577=CROSS JOIN IS ONLY POSSIBLE

DSE3802=Not found.

DSE3804=Npe from variable column.

DSE4104=Error converting data type varchar to float.

DSE4106=Cannot insert in {0} data type value.

DSE4107=Invalid data type {0} is passed for argument {1} in function {2}.
DSE4108=Invalid data type {0} is passed in function {1}.

DSE4109=Invalid operator for data type. operator EQUALS minus, type EQUALS {0}.
DSE4111=The {0} aggregate operation cannot take a {1} data type as an argument.
DSE4112=Syntax error converting the {0} value {1} to a column of data type {2}.
DSE4113=Datatype has been set to {0} type for decimal value.

DSE4114=The BLOB,CLOB data types cannot be compared or sorted, except when using is null
operator.

DSE4115=Invalid column name {0}.

DSE4116=lIterator not alligned to any valid location. (First call beforefirst() or first()).
DSE4117=lIterator not alligned to any valid location. (First call afterlast() or last()).
DSE4118=0bject do not belong to supported datatypes.

DSE4119=The {0} requires one argument.

DSE4120=0bject is an instance of ignorevalue.

DSE4121=Syntax error converting the {0} value {1} to a column of data type {2} and value {3}.

DSE4122=Cannot perform an aggregate function on an expression containing an aggregate or a
subquery.

DSE4123=Cannot Move to the key = {0}

DSE4124=Iterator is not Initialized.

Daffodil DB 207

Daffodil DB SQL Reference Guide

J2EE Certified

DSE4125=Column Not Found.

DSE4126=Method not supported.

DSE4127=There are no Childs for Class -> {0}.

DSES5001=User Defined Function {0} not supported

DSES002=Invalid Grantee in Grant/Revoke Statement

DSES5003=Invalid Event (Listener fired with SELECT Type Event with Operation Type update)
DSES5004=Invalid Operation Type in Event

DSES005=Can' specify autoIncrement for more than one column

DSES5006=Can' specify default option for autoIncrement column

DSES5007=Invalid data type for autoIncrement

DSE5008=There are no primary or candidate keys in the referenced table {0} that match the
referencing column list in the foreign key {1}.

DSE5009=No primary or unique constraint present

DSES5010=Schema contains some Database Objects i.e. tables, views, Domains, Routines, Triggers etc.
Can not be dropped

DSES5011=Invalid user name {0}

DSES012=Cannot have more than one null call clause

DSES5013=Cannot have more than one transformgroupspecification
DSES5014=Routines does not support multiple privileges

DSES015=Not a valid view both materialized and INTO tablename should be specified
DSES5016=Invalid catalog name for table

DSES5017=Datatypedescriptor and columns table result mismatch

DSE5018=Contains colunms refering domain

DSE5019=Current user is not authorized to drop routine

DSES020=Record to be deleted not present

Daffodil DB 208

Daffodil DB SQL Reference Guide

J2EE Certified

DSE5021=Language other than SQL is not supported

DSES022=Null-Call clause shall not be specified in case of SQL invoked procedures
DSE5023=No owner exist for Schema {0}

DSES5024=Procedure Exist for same name and same number of parameters
DSE5025=Catalog/Schema of routine name and specific name should be same
DSES5026={0} has no references rights on table {1}

DSES5027=Result Set is Closed

DSE5028=View {0} is not a materializedview.

DSES5029=Problem in case of delete event on RecordSetBufer {0}.
DSE5030=Problem in case of insert event on RecordSetBufer {0}.
DSES031=Insert not allowed for query {0}.

DSES5032=Error Occured while setting values for Record {0}.
DSES034=Column {0} is not updatable in query {1}.

DSES036=There is already one record in update state.

DSES5037=Deleterow cannot be called for record yet to be inserted.
DSES038=Loadrecordforidentity cannot be called for record yet to be inserted.
DSES040=Ignore Values cannot be passed in this sequence for client parameters.

DSES5041=Number of Parameter Infos for client parameters {0} are more than parameters in query

{1}.

DSES5042=Autonumber value cannot exceed {0}.

DSES045=Invalid event Type {0}.

DSES5046=Role Dependency graph is not initialized properly.
DSES5047=Privilege Dependency graph is not initialized properly.
DSES5101=Cannot drop view {0}, because this view is a materailized view.

DSES5102=Cannot drop materailized view {0}, because this view is not a materailized view.

Daffodil DB 209

Daffodil DB SQL Reference Guide

J2EE Certified

DSES5502=Invalid database name {0}.

DSES503=You can not change the ISOLATION LEVEL.

DSE5504=SEQUENCE {0}.NEXTVAL exceeds maxvalue and cannot be instantiated.
DSES5505=SEQUENCE {0}.NEXTVAL goes below minvalue and cannot be instantiated.
DSES506=Sequence already exists {0}.

DSES5507=Duplicate or conflicting {0} specifications.

DSES5508=Increment must be a non-zero integer.

DSE5509=Minvalue cannot be less than {0}.

DSE5510=MAXVALUE Can not be greater than {0}

DSES5511=0rder not Supported

DSES512=MINVALUE must be less than MAXVALUE

DSE5513=START WITH should lie between MINVALUE and MAXVALUE

DSE5514=Absoulte of the INCREMENT value must be less than or equal to MAXVALUE minus
MINVALUE and Should not be "0”

DSES515=MAXVALUE cannot be made to be less than the current value
DSES516=Sequence {0} does not exist

DSE5517=MINVALUE cannot be made greater than the current value
DSES518=Couldn’t Move to Keys Specified.

DSES5519=Database {0} already connected.

DSES5520=Date {0} should lie between {1} and {2}.

DSES521=Pointer is not set after referesh.

DSES5522=Database is in use.

DSES5523=Cannot create directory on specified path.

DSES524=Remove ChildServerSession.

DSE5525=START WITH cannot be less than minvalue.

Daffodil DB 210

Daffodil DB SQL Reference Guide

J2EE Certified

DSES5526=START WITH cannot be greater than maxvalue.

DSES528=No record found for keys specified.

DSES529=U cannot get parentsessionid without starting any save point.
DSES5530=Sessionid list contains only one element.No Start save point exists.
DSES531=SessionID’s are not hidden. Call hideSavepoint first.
DSES5532=StartSavePoint NOT Started or no of start savepoints started are less than 2.
DSES5533=Allow parallelsavepoint NOT started yet.

DSES534=Commit last savepoint first.

DSES5535=Ignore parallel savepoint first.

DSE5536=No element removed from list.

DSE5537=Invalid instance of iterator {0}.

DSES5538=No referenced table found for column {0}.

DSES539=Databasefile {0} is either removed or deleted from path.
DSES540=Invalid constraint name or cannot defer a constraint that is not defferable.
DSES5541=Invalid constraint mode {0}.

DSES542=Can not specify {0} more than one time.

DSES543=System Database is not properly created, delete the directory from the path first.
DSES5544=UserDatabase is not properly created,drop the database first.
DSES545=Value {0} is out of range of {1} data type.

DSES5546=Value larger than specified precision allows for this column.
DSES5547=Data type {0} is not convertable into data type {1}.

DSES548=Column name {0} appears more than once in the result column list.
DSES5549=Invalid date-time result.

DSES5551=XML file at specified Path {0} not found.

Daffodil DB 211

Daffodil DB SQL Reference Guide

J2EE Certified

DSES5552=Blob data file at specified Path {0} not found.
DSES553=Clob data file at specified Path {0} not found.
DSES554=XML File Write Exception.

DSES5555=Blob data file Write Exception.

DSES556=Clob data file Write Exception.

DSES5557=Error while getting LOB data.

DSES5558=Database is in Read Only Mode.
DSES560=Schedule {0} to be dropped does not exist.
DSES5561=Schedule {0} already exists.

DSES5562=Database {0} for which scheduler is added does not exist.
DSES564=Database to be backed up is in use.
DSES5566=Database {0} to be restored already exists.
DSES567=Database {0} to be backed up already exists.
DSE5568=Database {0} can not be restored.
DSES5569=Database can not be restored with name {0}.
DSES570=Database {0} can not be backed up.
DSES571=Database can not be backed up with name {0}.
DSE5572=Invalid path {0}.

DSES573=SystemDatabase and database {0} not compatible.
DSES5574=Can' take backup as Source Path And Destination Path are same.
DSES5575=User {0} is not having privillege to take Backup.
DSE5576=Database name can not be {0}.

DSES5577=Cannot get Connection as Backup is under process.

DSES5578=Adding Schedule is not supported on this version.

Daffodil DB 212

Daffodil DB SQL Reference Guide

J2EE Certified

DSE5579=Backup correpted - some files are either removed or deleted from path - Start backup after
removing all files from the path.

DSES5581=Access denied. Save point allready started.

DSES582=Exception: Trigger in recursion exceeding count 16.

DSES5583=Exception: Statement Trigger in recursion exceeding count 16.

DSES5584= Table has been already dropped.

DSES590= Feature{0} not supported below Version3.0

DSES5591= Version incompatible as executable jar doesn’t support Backward Compatibility

DSE6001={0} is non-comparable data type, cannot be used in Distinct/Predicates/Union/Intersect
queries.

DSE6004=Invalid type {0} in Like predicate.

DSE6005=Having Clause should not contain ContainsClause

DSE6006=0ORDER BY columns must appear in the select list if DISTINCT is contained in Select List.
DSE6007=Expression {0} cannot be specified in search condition.

DSE6008=Sequence number not allowed here.

DSE6009=SubQuery is not allowed in order by clause.

DSE6010=FullTextIndex name should be given if index exists on multiple column.
DSE6011=Contains clause not supported for queries involving more than one table or view.
DSE6012=Select Query is not supported in select list.

DSE6013=Sequence is not allowed in Group by and order by clause

DSE7001=Foreign key {0} has implicit reference to object {1} which does not have a primary key
defined on it.

DSE7002=Number of referencing columns in foreign key differs from number of referenced columns,
table {0}.

DSE7003=Foreign key {0} references invalid table {1}.

DSE7005=Invalid column(s) {0} specified in CHECK constraint {1}.

Daffodil DB 213

Daffodil DB SQL Reference Guide

J2EE Certified

DSE7006=Foreign key {0} references invalid column {1} in referenced table {2}.
DSE7007=Foreign key {0} references invalid column {1} in referencing table {2}.
DSE7008=Cannot alter table {0} because this table does not exist in database.
DSE7009=Cannot drop the table {0}, because it does not exist in the database.
DSE7010=Cannot drop the view {0}, because it does not exist in the database.
DSE7051=[clientstatement]you cannot SET client parameters for the query {0}.
DSE7052=[rsb]one record is already taken for insertion FIRST COMMIT that and then try again.
DSE7053=[rsb]Invalid call.

DSE7054=[rsb]you cannot call update row on inserted record.

DSE7055=[rsb]there is already one record in UPDATE state.

DSE7056=[rsb]this record was not updated.

DSE7057=Cannot drop the index {0} from table {1}, because it does not exist in the database.
DSE7058=User {0} already exists in the database.

DSE7059=Cannot drop the user {0}, because it does not exist.

DSE7060=Cannot create an index on {0}, because this table does not exist in database.
DSE7061=Udt support not available.

DSE7062=Duplicate username listed.

DSE7063=Invalid interval {0}.

DSE7064=Column count cannot be greater than one.

DSE7065=Cannot drop the trigger {0}, because it does not exist in the database.
DSE7066=Invalid grantee in grant statement.

DSE7067=Option {0} can be defined at most once.

DSE7068=HAS RECORD cannot be used in Group by clause.

DSE7069=lIllegal Mapping.

Daffodil DB 214

Daffodil DB SQL Reference Guide

J2EE Certified

DSE7070=Count cannot be less than or equal to zero, specified count is {0}.
DSE7071=Chained table info for table {0} not found.

DSE7072=Table details mapping does not contain table details {0}.

DSE7073=Table {0} already has a primary key defined on it.

DSE7074=More than one key specified in column level FOREIGN KEY constraint, table {0}.

DSE7075=ALTER TABLE ADD CONSTRAINT statement conflicted with FOREIGN KEY
constraint {0}. The conflict occurred in table {1}.

DSE7076=Catalog {0} does not exist.

DSE7077=Column names in each view must be unique. Column name {0} in view {1} is specified
more than once.

DSE7078=ALTER TABLE DROP COLUMN statement conflicted with FOREIGN KEY constraint
{0}. The conflict occurred in table {1}, column {2}.

DSE7079=ALTER TABLE ALTER COLUMN SET DEFAULT statement failed because column {0}
does not exist in table {1}.

DSE7080=ALTER TABLE ALTER COLUMN DROP DEFAULT statement failed because column
{0} does not exist in table {1}.

DSE7081=ALTER TABLE DROP COLUMN statement conflicted with VIEW {0}. The conflict
occurred in table {1}, column {2}.

DSE7082=ALTER TABLE DROP COLUMN statement conflicted with TRIGGER {0}. The conflict
occurred in table {1}, column {2}.

DSE7083=ALTER TABLE DROP COLUMN statement conflicted with CHECK constraint {0}. The
conflict occurred in table {1}, column {2}.

DSE7084=ALTER TABLE ADD CONSTRAINT statement conflicted with UNIQUE constraint {0}.
The conflict occurred in table {1}.

DSE7085=ALTER TABLE ADD CONSTRAINT statement conflicted with PRIMARY KEY
constraint {0}. The conflict occurred in table {1}.

DSE7086=ALTER TABLE ADD CONSTRAINT statement conflicted with CHECK constraint {0}.
The conflict occurred in table {1}.

DSE7087=ALTER TABLE ADD COLUMN statement conflicted with PRIMARY KEY constraint
{0}.ALTER TABLE only allows columns to be added that can contain nulls or have a DEFAULT
definition specified. Column {1} cannot be added to table {2} because it does not allow nulls and does
not specify a DEFAULT definition.

Daffodil DB 215

Daffodil DB SQL Reference Guide

J2EE Certified

KEY constraint {0}. The conflict occurred in table {1}.

DSE7088=ALTER TABLE ADD COLUMN statement conflicted with UNIQUE KEY constraint {0}.
The conflict occurred in table {1}.

DSE7089=ALTER TABLE ADD COLUMN statement conflicted with CHECK CONSTRAINT
{0}.ALTER TABLE only allows columns to be added that can contain nulls or have a DEFAULT
definition specified. Column {1} cannot be added to table {2} because it does not allow nulls and does
not specify a DEFAULT definition.

DSE7090=Database {0} specified is either removed or deleted from path.
DSE7091=HAS RECORD ColumnDetail contains invalid table name(s) {0}.
DSE7092=Duplicate column name {0}.

DSE7093=Alias Name Should Be specified with Aggregate/Expressional or Scalar Functional
columns.

DSE7094=Invalid boolean type {0}.
DSE7095=ColumnNames specified are not equal in length.
DSE7096=Node size should be greater than 2.
DSE7097=Invalid Instance Of Iterator {0}
DSE7098=Invalid status in Top Iterator

DSE7099=lterator for table not found

DSE8000=Position not set

DSES8001=Existing value and delete event fired
DSE8002=Specified System table {0} not found
DSE8003=Table details mismatch

DSE8004=Column name for index passed {0} is not Found
DSE8005=Index not found of reference {0} in references {1}
DSES8006=Invalid join type {0}

DSE8007=Query passed is null.

DSE8008=Column {0} is not a functional column.

Daffodil DB 216

Daffodil DB SQL Reference Guide

J2EE Certified

DSE8009=Invalid number
DSE8010=DROP TABLE statement conflicted with VIEW {0}. The conflict occurred in table {1}.

DSE8011=DROP TABLE statement conflicted with TRIGGER {0}. The conflict occurred in table
{1}.

DSE8012=DROP TABLE statement conflicted with CHECK constraint {0}. The conflict occurred in
table {1}.

DSE8013=DROP TABLE statement conflicted with FOREIGN KEY constraint {0}. The conflict
occurred in table {1}.

DSE8014=DROP VIEW statement conflicted with VIEW {0}. The conflict occurred in view {1}.
DSE8015=DROP VIEW statement conflicted with TRIGGER {0}. The conflict occurred in view {1}.
DSES8016=Inconsistent data type, value should be characterstringliteral

DSE8017="DATE” Keyword must specify in default clause for column {0}

DSES8018=Inconsistent data type, value should be booleanliteral for column {0}

DSES8019=Default value is too large for column {0}

DSE8021=Method {0} is Wrongly Called For SelectedColumnlterator

DSES8022=Invalid timestamp data type value. Timestamp format must be yyyy-mm-dd hh:mm:ss.fff.
DSES8023=Invalid time data type value. Time format must be hh:mm:ss.

DSE8024=Invalid date data type value. Date format must be yyyy-mm-dd.

DSES8025=Acess Denied Do not have Select privileges on column {0} of table {1}
DSE8026=Invalid or Parameterised queries

DSE8027=Invalid column(s) {0} specified in trigger condition for trigger {1}

DSES8028=Invalid column(s) {0} specified in trigger statement for trigger {1}

DSE8029=Invalid default clause for data type {0}

DSE8030=0bject type {0} is not compatiable with privilege type {1}

DSE8031=Row and table simuntaneoulsy can not be present in trigger definition

DSE8032=0ld or new values alias list can not be specified for Statement trigger

Daffodil DB 217

Daffodil DB SQL Reference Guide

J2EE Certified

DSE8033=Invalid country code {0}

DSES8034=Invalid Language code {0}

DSES8035=Loop statement does not contain terminating statement
DSE8036=Beginning label should be specified in case ending label used
DSE8037=Beginning label and ending label used should match for a statement
DSE8038=Invalid label used in leave or iterate statement

DSE8039=Duplicate variable declaration

DSE8040=Cursor {0} already closed

DSE8041=No value found for parameter {0}

DSE8042=0nly prepared statement like functionality supported in case of statements other than CALL
statement

DSE8043=0Only NEXT operation allowed on non scrollable curosr
DSE8044=Cardinality mismatch between query specification and fetch target list
DSE8045=Invalid Variable name in fetch target list

DSE8046=Cursor in non updatable

DSES8047=Table name {0} not present in query specification of cursor {1}
DSE8047=Variable {0} not declared in procedure {1}

DSE8049=The maximum size for all index columns can not exceed {0} bytes. The index {1} with size
{2} bytes can not be created.

DSES8050=such column list already indexed.

DSE8051=Cursor {0} either not opened or has been closed

DSE8052=Either EXECUTE not called or command does not produce result set
DSES8053=Either URL or dataSourceName must be specified to create connection
DSE8054=No such DataSource {0}

DSE8055=Data Source name can not be null

Daffodil DB 218

Daffodil DB SQL Reference Guide

J2EE Certified

DSE8056=Transaction Isolation Level passed is Not Valid

DSES8057=Invalid ResultSetType {0}

DSE8058=Invalid concurrency {0}

DSE8059=UDTs are not supported

DSE8060=Parameter Index can not be less than 1,passed parameter index is {0}
DSE8061=Not A Valid Direction {0}

DSE8062=In case of type Forward only ,only valid direction is fetch forward
DSES8063=Fetch Size can not be less than 0

DSE8064=UpdateRow called while curosr is on newly insert row
DSE8065=Invalid cursor position

DSES8066=Before Calling insertRow ,cursor must be on insertrow
DSE8067=Auto column value can not be NULL

DSE8068=Do not have rights to revoke privileges on object {0}
DSES8069=length/precision/largeobjectlength can not zero for datatypes
DSE8090=Cursor statements cannot be executed through Daffodil DB Shell/Daffodil DB Browser.
DSES8091=Invalid colunm Indexes for GeneratedKeys

DSES8092=Invalid role {0}.

DSE8093=The role can not be granted to itself or any of its applicable roles
DSES8094=Invalid role/user {0}.

DSE8095=No such role authorization descriptor found to delete.

DSE8096=Role to be granted does not lie in applicable role of grantor {0} or doesnt have WITH
ADMIN OPTION.

DSE8097=Currently active User {0} can not be dropped
DSES8098=Role {0} is currently active/Lies in applicable roles.

DSE8100=Incompatible data type {O} and {1}.

Daffodil DB 219

Daffodil DB SQL Reference Guide

J2EE Certified

DSES8101=Syntax error converting data type {0} to {1}.

DSES8102=Cannot create index on view

DSES8103=0bject can not be created with name greater than 128 characters
DSE8104=System or Administrator user can not be dropped

DSES8105=Do not have CREATE/DROP user permission.

DSE8106=Syntax error converting {0} data type to date data type.

DSES8107=Length {0} exceeds premissable values for length or is invalid.
DSES8108=Invalid check constraint condition {0}

DSE8109=Invalid column name/references in triggered action

DSE8110=Do not have DROP permission on {0}

DSES8111=Invalid start index passed to the {0} function. Start index can not be less than one.
DSES8112=Invalid length parameter passed to the {0} function. Length can not be negative.
DSES8113=repeat counter too large.

DSES8114=Invalid counter passed to the {0} function. Counter can not be negative.
DSE8116=Cannot alter domain {0} because this domain does not exist in database.
DSES8115=can not add column as check constraint applied is violated.

DSES8117= {0} length can not exceed {1}

DSES8118=Problem in creating file {0} either it contains illegal characters or blank spaces
DSES8119=Invalid columnName or indexName used in ContainClause{0}
DSE6002=Blank or Stop words cannot be used for searching.

DSE6003=For Update Option cannot be used if query contains multiple tables, view, group by or
having clause.

DSE8120=Specified class is not valid {0}
DSES8121=wrong name: {0}

DSES8122=Specified jar name is not valid {0}

Daffodil DB 220

Daffodil DB SQL Reference Guide

J2EE Certified

DSES8123=Number of parameters in procedure declaration does not match with number of parameters
in java method

DSES8124=Datatype mismatch in parameters at {0}

DSES8125=Data Type not supported

DSE8126=Method {0} does not existin {1}

DSE8127=Class does not have <init>(java.sql.Connection) constructor
DSES8128 =Contains Clause of the query contained only ignored words
DSE8129={0} must be the current user.

DSES8131=Role {0} not granted to user {1}

DSES8132=Do not have sufficient privileges for select
DSE8133=CurrentUser/CurrentRole does not have execute privileges on {0}.
DSES8134=Incorrect alias {0}

DSES8135=Alias name not provided for column {0}

DSE8136=This Feature not supported in version {0}

DSES8137=Do not have sufficient privileges for create schema with {0} catalog.
DSES8138=Contain clause not supported in searched condition.
DSE8139={0}

DSES8141=Number of arguments exceed actual number of columns
DSES8142=Parameterized statement not allowed in triggers.
DSE8143=User/Role {0} has Insufficient privileges.

DSES8144=Length of column {0} should be equal to 1031.

DSES8145=Error while executing {0} method

DSES8146="TIME” Keyword must specify in default clause for column {0}
DSES8147="TIMESTAMP” Keyword must specify in default clause for column {0}

DSES8148=Value larger than specified precision not allowed for column {0}

Daffodil DB 221

Daffodil DB SQL Reference Guide

J2EE Certified

DSE8149=Data type value is invalid for column {0} / Date format must be yyyy-mm-dd.
DSES8150=length/precision/largeobjectlength of datatype can not zero for column {0}
DSE1186=Cursor {0} is not scrollable

DSES8151=Do not have CREATE/DROP database permission for {0} session.
DSES8152=Contains clause not allowed in view definition.

DSES8153={0} in triggered action for trigger {1}

DSES8154=More than one primary key constraint can not be applied on column {0}
DSES8155=More than one unique key constraint can not be applied on column {0}
DSE8156=More than one not null constraint can not be applied on column {0}
DSE8157=Both primary key and unique key constraint”s can not be applied on column {0}
DSES8158=Column {0} should exist on search condition

DSE8159=Parameters statement not allowed in View {0}

DSE8160=Exception: Procedure in recursion exceeding count 32
DSES8161=Unique/Primary key constraint already exist on table {0}

DSE8162=Query expression”s length {0} can not exceed "4192” characters for view {1}.

DSE8163=ALTER TABLE DROP COLUMN statement conflicted with
PRIMARY/UNIQUE/FOREIGN KEY constraint {0}. The conflict occurred in table {1}, column {2}.

DSES8164=Parameterised query not allowed in Stored Procedure.
DSES8165=Default value™s length not supported up to "1024”.

DSE8166=Current session does not have rights on schema {0}

DSES8167=Grantor {0} does not have any privilege with grant option on object {1}.
DSE8168=Can not create default schema {0}.

DSE8169=Can not drop default schema {0}.

DSES8170=Result of repeat function exceeds the maximum length of char data type.

DSE8171=Constraint {0} should be less than 128 characters

Daffodil DB 222

Daffodil DB SQL Reference Guide

J2EE Certified

DSE8172=Parameterized statement not allowed in domains.

DSES8173=Invalid parameter {0}.

DSE8174=Aggregate function not allowed in procedure call.
DSE8175=ColumnName/VariableName {0} is invalid/not declared.

DSES8176=Current user {0} must have references rights on column {1} of table {2}.
DSES8177=The value you entered is not consistent with the data type or length of the parameter.
DSES8178=Datatype {0} should be predefined datatype.

DSES8179=User {0} must be the database owner OR admin user.

DSE8180=Database can not be created with user {0}.

DSES8181=Database owner {0} can not be dropped.

DSES8182=Procedure {0} does not exist in databse.

DSE8183=Can not declare variable {0} with same name.

DSES8184=SubQuery not allowed in procedure parameters.

DSES8185=Role {0} does not exist in database.

DSES8186=Trigger table alias does not match with alias {0} used in when condition.
DSES8187=Can not add multiple unique OR primary key constraint on same column in table {0}
DSES8188=Acess Denied Do not have Usage privileges on domain {0}

DSE8189=Schema statements(Create, Alter, And Drop) not allowed in procedures.

Daffodil DB 223

Daffodil DB SQL Reference Guide

J2EE Certified

2. Country Code Table

Country
Country Name Code Country Name Country Code
Andorra AD Botswana BW
United Arab Emirates AE Belarus BY
Afghanistan AF Belize BZ
AG AG Canada CA
Anguilla Al CC CC
Central African
Albania AL Republic CF
Armenia AM Congo CG
Netherlands Antilles AN Switzerland CH
Angola AO Céte d'lvoire Cl
AQ AQ CK CK
Argentina AR Chile CL
AS AS Cameroon CM
Austria AT China CN
Australia AU Colombia CcO
Aruba AW Costa Rica CR
Azerbaijan AZ Cuba CuU
Bosnia and
Herzegovina BA Cape Verde Ccv
Barbados BB CX CX
Bangladesh BD Cyprus cY
Belgium BE Czech Republic Cz
Burkina Faso BF Germany DE
Bulgaria BG Djibouti DJ
Bahrain BH Denmark DK
Burundi Bl Dominica DM
Benin BJ Dominican Republic DO
Bermuda BM Algeria Dz
Brunei BN Ecuador EC
Bolivia BO Estonia EE
Brazil BR Egypt EG
Bahamas BS Western Sahara EH
Bhutan BT Eritrea ER
BV BV Spain ES
Daffodil DB 224

J2EE Certified

Daffodil DB SQL Reference Guide

Country Name Country Code Country Name Country Code
Ethiopia ET Indonesia ID
Finland Fl Ireland IE
Fiji FJ Israel IL
FK FK India IN
Micronesia FM 10 10
FO FO Iraq 1Q
France FR Iran IR
FX FX Iceland IS
Gabon GA ltaly IT
United Kingdom GB Jamaica JM
GD GD Jordan JO
Georgia GE Japan JP
French Guiana GF Kenya KE
Ghana GH Kyrgyzstan KG
Gl Gl Cambodia KH
GL GL Kiribati Kl
Gambia GM Comoros KM
Guinea GN KN KN
Guadeloupe GP North Korea KP
Equatorial
Guinea GQ South Korea KR
Greece GR Kuwait KW
GS GS KY KY
Guatemala GT Kazakhstan KZ
GU GU Laos LA
Guinea-Bissau GW Lebanon LB
Guyana GY LC LC
Hong Kong HK Liechtenstein LI
HM HM Sri Lanka LK
Honduras HN Liberia LR
Croatia HR Lesotho LS
Haiti HT Lithuania LT
Hungary HU Luxembourg LU
Daffodil DB

225

J2EE Certified

Daffodil DB SQL Reference Guide

Country Name Country Code Country Name Country Code
Latvia LV NR NR
Libya LY Niue NU
Morocco MA New Zealand NZ
Monaco MC Oman OM
Moldova MD Panama PA
Madagascar MG Peru PE
MH MH French Polynesia PF
Papua New
Macedonia MK Guinea PG
Mali ML Philippines PH
Myanmar MM Pakistan PK
Mongolia MN Poland PL
MO MO PM PM
MP MP PN PN
Martinique MQ Puerto Rico PR
Mauritania MR Portugal PT
Montserrat MS PW PW
Malta MT Paraguay PY
Mauritius MU Qatar QA
MV MV RE RE
MW MW Romania RO
Mexico MX Russia RU
Malaysia MY Rwanda RW
Mozambique MZ Saudi Arabia SA
Namibia NA SB SB
New Caledonia NC Seychelles SC
Niger NE Sudan SD
NF NF Sweden SE
Nigeria NG Singapore SG
Nicaragua NI SH SH
Netherlands NL Slovenia Sl
Norway NO SJ SJ
Nepal NP Slovakia SK
Daffodil DB

226

Daffodil DB SQL Reference Guide

J2EE Certified

Country Name Country Code Country Name Country Name
Slovakia SK Uganda uG
Sierra Leone SL UM UM
SM SM United States us
Senegal SN Uruguay Uy
Somalia SO Uzbekistan uz
Suriname SR Vatican VA
ST ST VC VC
El Salvador SV Venezuela VE
British Virgin
Syria SY Islands VG
U.S. Virgin
Swaziland SZ Islands Vi
TC TC Vietnam VN
Chad TD Vanuatu VU
French Southern
Territories TF WF WF
Togo TG WS WS
Thailand TH Yemen YE
Tajikistan TJ Mayotte YT
Tokelau TK Yugoslavia YU
Turkmenistan ™ South Africa ZA
Tunisia TN Zambia ZM
Tonga TO Zaire ZR
East Timor TP Zimbabwe ZW
Turkey TR
Trinidad and
Tobago TT
TV TV
Taiwan T™W
Tanzania TZ
Ukraine UA
Daffodil DB 227

Daffodil DB SQL Reference Guide

J2EE Certified

3. Language Code Table

Language Name Language Code Language Name Language Code

Afar aa French fr
Abkhazian ab Frisian fy
Afrikaans af Irish ga
Amharic am Scots Gaelic gd
Arabic ar Galician gl
Assamese as Guarani gn
Aymara ay Gujarati gu
Azerbaijani az Hausa ha
Bashkir ba Hebrew he
Byelorussian be Hindi hi
Bulgarian bg Croatian hr
Bihari bh Hungarian hu
Bislama bi Armenian hy
Bengali bn Interlingua ia
Tibetan bo Indonesian id
Breton br Interlingue ie
Catalan ca Inupiak ik
Corsican co Indonesian in
Czech cs Icelandic is
Welsh cy Italian it
Danish da Inuktitut iu
German de Hebrew iw
Bhutani dz Japanese ja
Greek el Yiddish ji
English en Javanese jw
Esperanto eo Georgian ka
Spanish es Kazakh kk
Estonian et Greenlandic ki
Basque eu Cambodian km
Persian fa Kannada kn
Finnish fi Korean ko
Fiji fj Kashmiri ks
Faroese fo Kurdish ku
Daffodil DB 228

Daffodil DB SQL Reference Guide

J2EE Certified

Language Name Language Code Language Name Language Code
Kirghiz ky Slovak sk
Latin la Slovenian sl
Lingala In Samoan sm
Laothian lo Shona sn
Lithuanian It Somali SO
Latvian (Lettish) Iv Albanian sq
Malagasy mg Serbian sr
Maori mi Siswati ss
Macedonian mk Sesotho st
Malayalam ml Sundanese su
Mongolian mn Swedish sV
Moldavian mo Swalhili sw
Marathi mr Tamil ta
Malay ms Telugu te
Maltese mt Tajik tg
Burmese my Thai th
Nauru na Tigrinya ti
Nepali ne Turkmen tk
Dutch nl Tagalog tl
Norwegian no Setswana tn
Occitan oc Tonga to
Oromo (Afan) om Turkish tr
Oriya or Tsonga ts
Punjabi pa Tatar tt
Polish pl Twi tw
Pashto (Pushto) ps Uighur ug
Portuguese pt Ukrainian uk
Quechua qu Urdu ur
Rhaeto-Romance rm Uzbek uz
Kirundi rn Vietnamese Vi
Romanian ro Volapuk VO
Russian ru Wolof wo
Kinyarwanda rw Xhosa xh
Sanskrit sa Yiddish yi
Sindhi sd Yoruba yo
Sangho sg Zhuang za
Serbo-Croatian sh Chinese zh
Sinhalese si Zulu Zu
Daffodil DB 229

