
 

                                                                                                                                                
 

 

 

 

 

Daffodil DB 
 

SQL Reference Guide 
 

 

 

 

 

 

 

 

Version 4.1 

 
 March 2005 

 

 



 
 
  

Daffodil DB          2 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Copyright © Daffodil Software Limited 
Sco 42, 3rd Floor 
Old Judicial Complex, Civil Lines 
Gurgaon - 122001 
Haryana, India. 
www.daffodildb.com 
 
All rights reserved. Daffodil DB™ is a registered trademark of Daffodil Software Limited. Java™ is a 
registered trademark of Sun Microsystems, Inc. All other brand and product names are trademarks of their 
respective companies. 
 



 
 
  

Daffodil DB          3 
 

Table of Contents 
 
 

1 Preface…………………………………….………………………………………………….7 
1.1 Purpose of Document.......... 7 
1.2 Audience............................. 7 

2 Conventions............................................................................................................................. 8 
3 Related Document .................................................................................................................. 9 
4 Keywords............................................................................................................................... 10 

3.1 Reserved Words................ 10 
3.2 Non-Reserved Keywords...11 

5 Identifier................................................................................................................................ 13 
5.1 Regular Identifier.................13 
5.2 Delimited Identifier..............14 

6 Data Types............................................................................................................................. 15 
6.1 Predefined Type..................15   

6.1.1 Character String Type................. 15     
6.1.1.1 Character or Char.........16    
6.1.1.2 Character Varying or Char Varying or Varchar or Varchar2......17 

 6.1.1.3 Character Large Object or Char Large Object or CLOB or Long 17 
6.1.2 Binary Large Object String Type....19     

6.1.2.1 Binary..............19    
6.1.2.2 Varbinary.........20  
6.1.2.3 BLOB or Long Varbinary.........20  

6.1.3 Numeric Type..................21  
  6.1.3.1 Exact Numeric Type..................21 
   6.1.3.1.1 NUMERIC or DECIMAL or DEC or NUMBER...........22 
   6.1.3.1.2 INTEGER or INT......23     
   6.1.3.1.3 SMALLINT...............23     
   6.1.3.1.4 LONG or BIGINT.....24      
   6.1.3.1.5 BYTE or TINTINT....25      

6.1.3.2 Approximate Numeric Type.......25      
   6.1.3.2.1 Float...........26       
   6.1.3.2.2 Real............27       
   6.1.3.2.3 Double Precision.........27 
  6.1.4 Boolean.....................28 
  6.1.5 Date time Type..........28       
   6.1.5.1 Date...........29       
   6.1.5.2 Time...........30       
   6.1.5.3 Time Stamp.............31  

6.2 Domain Name...........................31  
7 Literals................................................................................................................................... 32 

7.1 Character String Literal..............32 
7.2 Numeric Literal..........................32 
7.3 Date Time Literal.......................33 
7.4 Boolean Literal..........................35 

8 Functions ............................................................................................................................... 36 
8.1 Numeric Functions.....................36 

  8.1.1 Absolute Value Expression 



 
 
  

Daffodil DB          4 
 

   
8.1.2 Modulus Value Expression 

  8.1.3 Sine Function 
  8.1.4 Power Function 
  8.1.5 Rand Function 
  8.1.6 SQRT Function 
  8.1.7 TRUNCATE Function 
  8.1.8 FLOOR Function 
  8.1.9 CEILING Function 
  8.1.10 LOG Function 
  8.1.11 EXP Function 
  8.1.12 COS Function 
  8.1.13 TAN Function 
  8.1.14 COT Function 
  8.1.15 ACOS Function 
  8.1.16 ASIN Function 
  8.1.17 ATAN Function 
  8.1.18 DEGREES Function 
  8.1.19 RADIANS Function 
  8.1.20 PI Function 
  8.1.21 ATAN2 Function 
  8.1.22 ROUND Function 
  8.1.23 SIGN Function 

8.2 Date Time Functions......................52 
  8.2.1 DAYNAME Function 
  8.2.2 DAYOFMONTH Function 
  8.2.3 DAYOFWEEK Function 
  8.2.4 DAYOFYEAR Function 
  8.2.5 WEEK Function 
  8.2.6 MONTH Function 
  8.2.7 YEAR Function 
  8.2.8 MONTHNAME Function 
  8.2.9 HOUR Function 
  8.2.10 MINUTE Function 
  8.2.11 SECOND Function 
  8.2.12 TIMESTAMPADD Function 
  8.2.13 TIMESTAMPDIFF Function 
  8.2.14 CURDATE Function 
  8.2.15 CURTIME Function 
  8.2.16 CURTIMESTAMP Function 
  8.2.17 DATE Function 

8.2.18 TIME Function 
8.3 String Functions.........................64 

  8.3.1 ASCII Value Function 
  8.3.2 Left Function 
  8.3.3 Right Function 
  8.3.4 Space Function 
  8.3.5 Replace Function 
  8.3.6 Repeat Function 



 
 
  

Daffodil DB          5 
 

  8.3.7 Soundex Function 
  8.3.8 Insert Function 
   

8.3.9 Difference Function 
  8.3.10 Concat Function 
  8.3.11 Locate Function 
  8.3.12 Lcase Function 
  8.3.13 Ucase Function 
  8.3.14 Ltrim Function 
  8.3.15 Rtrim Function 
  8.3.16 Char Function 
  8.3.17 Length Function 
  8.3.18 Substring Function 
  8.3.19 EqualsCaseSensitive Function 

8.4 System Functions.......................81 
  8.4.1 Current Database Function or CURRENT_DATABASE 
  8.4.2 User Function or CURRENT_USER 
  8.4.3 IFNULL Function 

8.5 Special Functions........................82 
  7.5.1 TOP Function 

8.6 Aggregate Functions....................83 
  7.6.1 Count 
  7.6.2 Avg 
  7.6.3 Sum 
  7.6.4 Max/Min 

9 Expressions............................................................................................................................ 85 
9.1 Numeric Expression....................85 
9.2 Boolean Expression.....................87 
9.3 String Expression.........................89 
9.4 Expression Primary......................91 

9.4.1 SubQuery 
  9.4.2 COLUMN REFERENCE 
  9.4.3 CONSTANT 
  9.4.4 MULTI-VALUED EXPRESSION 
  9.4.5 PARENTHESIZED EXPRESSION 

10 Predicates ............................................................................................................................ 95 
10.1 Comparison Predicate....................96 
10.2 Between Predicate.........................98 
10.3 Like Predicate................................100 
10.4 Exists Predicate..............................101 
10.5 In Predicate....................................102 
10.6 Null Predicate.................................103 
10.7 Quantified Comparison Predicate...104 
10.8 Contains Predicate*...........................107 

11 Data Definition Language................................................................................................ 110 
11.1 Create Table Statement...................112 
11.2 Create Trigger Statement.................121 
11.3 Create Procedure Statement............124  
11.4 Create View Statement....................135 



 
 
  

Daffodil DB          6 
 

11.5 Create Index Statement...................136 
11.6 CreateFullTextIndex*........................137 
11.7 Create Domain Statement................139 
11.8 Create Schema Statement ..............139 
 
11.9 Create User Statement.....................140 
11.10 Alter Table Statement.....................141 
11.11 Drop Table Statement.....................143 
11.12 Drop View Statement.....................144 
11.13 Drop Index Statement.....................144 
11.14 DropFullTextIndex*..........................144 
11.15 Drop Schema Statement..................144 
11.16 Drop Procedure Statement...............145 
11.17 Drop Trigger Statement....................146 

12 Persistent Stored Modules ............................................................................................... 147 
13 Data Manipulation Language.......................................................................................... 149 

13.1 Insert Statement.................................149 
13.2 Update Statement...............................151 
13.3 Delete Statement................................152 

14 Data Query And Control Language ............................................................................... 153 
14.1 Select Statement.................................153 

  14.1.1 FROM Clause 
  14.1.2 JOIN Operators 
  14.1.3 GROUP BY Clause 
  14.1.4 UNION/INTERSECTOR Operator 
  14.1.5 ORDER BY Clause 
  14.1.6 Alias Support 
  14.1.7 Comments Support 

15 Call Statement................................................................................................................... 171 
16 Session And Transaction Control Statements................................................................ 172 

16.1 Set Transaction Statement .....................172 
16.2 Savepoint Statement..............................172 
16.3 Commit Statement.................................172 
16.4 Rollback Statement................................173 
16.5 Set Session Authrization.........................173 
16.6 Set Session Characteristics Statement.....174 

17 SQL Security And Privileges........................................................................................... 175 
17.1 Grant Statement......................................176 
17.2 Revoke Statement ...................................178 

 17.3 Create Role 
 17.4 Grant Role 
 17.5 Drop Role 
   18 Appendix… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … .183 
 18.1 Error Messages 
 18.2 Country Codes 
 18.3 Language Codes 

rajat.chugh
* Features that are not supported in One$DB



 
 
  

Daffodil DB          7 
 

Preface 

Purpose of This Document 

SQL Reference Guide is a comprehensive document which covers all the SQL-99 features supported 
by Daffodil DB. This ready reference tool describes in detail the syntax and semantics of SQL 
language statements and elements for Daffodil DB. It explains how to use SQL with Daffodil DB 
and how to perform various database operations on Daffodil DB such as creating tables or indexes, 
managing transactions and sessions, Daffodil DB security features etc. 

  

Audience 

This guide is intended to act as a ready reference tool for software developers building Daffodil 
DB applications. This guide assumes that that you are familiar with the following concepts: 

• Basic SQL (Structured Query Language). 

• Basic Database Concepts. 

• Basic Java Programming Language. 

It is also assumed that the reader has gone through “Getting Started with Daffodil DB Guide”.  

 



 
 
  

Daffodil DB          8 
 

Conventions 
 

This section describes documentation syntax conventions. Syntax conventions convey specific 
information on keywords and clauses in the SQL statements described in the document. 

Syntax Conventions 

Each SQL statement uses certain types of capitalization, formatting, and punctuation that describe 
the attributes of different portions of the statement. 

UPPERCASE If a portion of an SQL statement occurs in UPPERCASE, then the capitalized 
words are keywords, which are usually required in the SQL statement or clause. 
Keywords are not case sensitive, and they must be spelled exactly the way they 
display in the document. 

[] Clauses in an SQL statement that occur between [brackets] are optional. If an 
optional clause has several components or keywords, they occur within brackets.  

{} Curly Braces denote a choice among mandatory elements. They enclose a set of 
options, separated by vertical bars ( | ). You must choose at least one of the 
options. 

… Ellipses in an SQL statement have similar meaning as “etc.” It denotes that a 
series of keywords, clauses, or variables that precede the ellipses can go on 
indefinitely. 

|  Vertical bars in SQL statement separate a set of options. 
 
( ) , ; Parentheses and other punctuation marks are required elements. Enter them as shown 

in syntax diagrams. 



 
 
  

Daffodil DB          9 
 

Related Documentation 

 
Daffodil DB Getting 
Started Guide 

 

Designed to help new and intermediate Daffodil DB users navigate and 
perform common tasks like How to start and stop Daffodil DB, 
Understanding key variables used by Daffodil DB, User documentation 
bundled with Daffodil DB. Also briefly describes Daffodil DB Editions 
and Tools  

Daffodil DB System 
Guide 

 

Describes the architecture of Daffodil DB and provides the information 
that the server administrator might need to keep Daffodil DB running 
with high performance and reliability in a server framework or a multi-
user application server. Also describes the standards on which Daffodil 
DB had been built, transaction capabilities and some of the unique 
features supported by Daffodil DB. 

Daffodil DB JDBC 
Reference Guide 

 

Explains how to use Daffodil DB and JDBC technology to develop 
applications. It describes the basic Daffodil DB and JDBC concepts like 
JDBC 3.0 features supported by Daffodil DB, how to create and access 
Daffodil DB databases through JDBC API, Daffodil DB support for 
JDBC and JTA and how to use Daffodil DB in a Distributed Transaction 
Processing environment. 

 

Daffodil DB Tools 
Guide 

 

Explains how to use Daffodil DB Browser with Embedded as well as 
Server versions of Daffodil DB. Describes how to perform various 
database operations on Daffodil DB using Daffodil DB Browser such as 
creating a database, creating database objects, manipulating data, creating 
triggers etc. 

 



 
 
  

Daffodil DB          10 
 

Keywords 

Reserved Words 

Daffodil DB reserves certain keywords as Reserved Words which cannot be used, as an identifier 
for a table, column, or index, or as a correlation name defined in a SELECT statement, unless you 
delimit them. A delimited identifier is an identifier specified in double quotes. Any word, 
including keywords, can be a delimited identifier. 

Daffodil DB Reserved Words 
ABSOLUTE  
ACTION  
ADD  
ADMIN  
AFTER  
AGGREGATE 
ALIAS  
ALL  
ALLOCATE  
ALTER   
AND  
ANY  
ARE  
ARRAY  
AS  
ASC 
ASSERTION  
AT  
AUTHORIZATION  
AVG 
BEFORE  
BEGIN  
BIGINT  
BINARY  
BIT  
BLOB  
BOOLEAN  
BOTH  
BREADTH  
BY  
BYTE 
CALL  
CASCADE  
CASCADED  
CASE  
CAST  
CATALOG  
CHAR  
CHARACTER 
CHECK  
CLASS  
CLOB  
CLOSE  
COLLATE  
COLLATION  
COLUMN  
COMMIT 
COMPLETION  
CONNECT  
CONNECTION  
CONSTRAINT  
CONSTRAINTS 
CONSTRUCTOR  

DEFERRED  
DELETE  
DEPTH  
DEREF  
DESC  
DESCRIBE  
DESCRIPTOR 
DESTROY  
DESTRUCTOR  
DETERMINISTIC  
DICTIONARY  
DIAGNOSTICS  
DISCONNECT 
DISTINCT  
DOMAIN  
DOUBLE  
DROP  
DYNAMIC  
EACH  
ELSE  
END  
EQUALS  
ESCAPE  
EVERY  
EXCEPT  
EXCEPTION  
EXEC  
EXECUTE  
EXTERNAL 
FALSE  
FETCH  
FIRST  
FLOAT  
FOR  
FOREIGN  
FOUND  
FROM  
FREE  
FULL 
FUNCTION  
GENERAL  
GET  
GLOBAL  
GO  
GOTO  
GRANT  
GROUP  
GROUPING 
HAVING  
HOST  
HOUR  
IDENTITY  
IGNORE  

LEFT  
LESS  
LEVEL  
LIKE 
LIMIT  
LOCAL  
LOCALTIME  
LOCALTIMESTAMP  
LOCATOR  
LONG  
MIN 
MAP  
MAX  
MATCH  
MINUTE  
MODIFIES  
MODIFY  
MODULE  
MONTH 
NAMES  
NATIONAL  
NATURAL  
NCHAR  
NCLOB  
NEW  
NEXT  
NO  
NONE 
NOT  
NULL  
NUMERIC  
OBJECT  
OF  
OFF  
OLD  
ON  
ONLY  
OPEN  
OPERATION 
OR  
ORDER  
ORDINALITY  
OUT  
OUTER  
OUTPUT  
PAD  
PARAMETER  
PARTIAL  
PATH  
POSTFIX  
PRECISION  
PREFIX  
PREORDER  

ROLLUP  
ROUTINE  
ROW  
ROWNUM  
ROWS  
SAVEPOINT  
SCHEMA  
SCROLL  
SCOPE  
SEARCH  
SECOND  
SECTION  
SELECT  
SEQUENCE  
SESSION  
SESSION_USER  
SET  
SETS  
SIZE  
SMALLINT  
SOME 
SPACE  
SPECIFIC  
SPECIFICTYPE  
SQL  
SQLEXCEPTION  
SQLSTATE  
SQLWARNING  
START  
STATEMENT  
STATIC  
STRUCTURE  
SUM  
SYSTEM_USER 
TABLE  
TEMPORARY  
TERMINATE  
THAN  
THEN  
TIME  
TIMESTAMP 
TIMEZONE_HOUR  
TIMEZONE_MINUTE  
TINYINT  
TO  
TRAILING  
TRANSACTION  
TRANSLATION  
TREAT  
TRIGGER  
TRUE  
UNDER  
UNION  



 
 
  

Daffodil DB          11 
 

CONTINUE  
CORRESPONDING  
COUNT  
CREATE  
CROSS  
CUBE  
CURRENT 
CURRENT_DATE  
CURRENT_PATH  
CURRENT_ROLE  
CURRENT_TIME  
CURRENT_TIMESTAMP 
CURRENT_USER  
CURSOR  
CYCLE  
DATA  
DATE  
DAY  
DEALLOCATE  
DEC  
DECIMAL  
DECLARE  
DEFAULT  
DEFERRABLE  
 

IMMEDIATE  
IN  
INDICATOR  
INITIALIZE  
INITIALLY  
INNER  
INOUT  
INPUT  
INSERT  
INT  
INTEGER  
INTERSECT  
INTERVAL 
INTO  
IS  
ISOLATION  
ITERATE  
JOIN  
KEY 
LANGUAGE  
LARGE  
LAST  
LATERAL  
LEADING  
 

PREPARE  
PRESERVE  
PRIMARY 
PRIOR  
PRIVILEGES  
PROCEDURE  
PUBLIC  
READ  
READS  
REAL  
RECURSIVE  
REF  
REFERENCES  
REFERENCING  
RELATIVE  
RELEASE  
RESTRICT  
RESULT  
RETURN  
RETURNS  
REVOKE  
RIGHT 
ROLE  
ROLLBACK  
 

UNIQUE  
UNKNOWN 
UNNEST  
UPDATE  
USAGE  
USER  
USING  
VALUE  
VALUES  
VARBINARY  
VARCHAR  
VARIABLE  
VARYING  
VIEW  
WHEN  
WHENEVER  
WHERE  
WITH  
WITHOUT  
WORK  
WRITE  
YEAR  
ZONE 
 

 

 

NOTE: Words listed here are SQL reserved words and should not be used. Some of these 
keywords may not be supported in the current version, but are reserved for future versions of 
Daffodil DB. 

Non-Reserved Words 

Daffodil DB reserves certain words as Non Reserved Words. Non-Reserved words can be used as 
an identifier for a table, column, or index, or as a correlation name, which is defined in a SELECT 
statement. 

 

Daffodil DB Non-Reserved Words 
ABS  
ACOS  
ADA  
ASENSITIVE  
ASCII  
ASSIGNMENT  
ASENSITIVE  
ASIN  
ASYMMETRIC  
ATAN  
ATAN2  
ATOMIC  
ATTRIBUTE  
B  
BETWEEN  
BIT_LENGTH  
BITVAR 
C  
CALLED  
CARDINALITY  
CATALOG_NAME  

EXISTING  
EXISTS  
EXP  
EXTRACT  
FINAL  
FLOOR  
FORTRAN  
G  
GENERATED  
GRANTED 
HIERARCHY  
HOLD  
IFNULL  
IMPLEMENTATION  
INDEX  
INFIX  
INSENSITIVE  
INSTANCE  
INSTANTIABLE  
INVOKER  
K  

REPEAT  
REPLACE  
RETURNED_LENGTH  
RETURNED_OCTET_LENGTH  
RETURNED_SQLSTATE  
ROUND  
ROUTINE_CATALOG  
ROUTINE_NAME  
ROUTINE_SCHEMA  
ROW_COUNT 
RTRIM  
SCALE  
SCHEMA_NAME  
SECURITY  
SELF  
SENSITIVE  
SERIALIZABLE  
SERVER_NAME 
SIMPLE  
SIGN  
SIN  



 
 
  

Daffodil DB          12 
 

CEILING  
CHAIN  
CHAR_LENGTH 
CHARACTER_LENGTH  
CHARACTER_SET_CATALOG  
CHARACTER_SET_NAME  
CHARACTERISTICS 
CHARACTER_SET_SCHEMA  
CHECKED  
CLASS_ORIGIN  
COALESCE  
COBOL 
COLLATION_CATALOG  
COLLATION_NAME  
COLLATION_SCHEMA  
COLUMN_NAME 
COMMAND_FUNCTION  
COMMAND_FUNCTION_CODE  
COMMITTED  
CONCAT  
CONDITION_NUMBER 
CONNECTION_NAME  
CONSTRAINT_CATALOG  
CONSTRAINT_NAME  
CONSTRAINT_SCHEMA 
CONTAINS  
CONVERT  
COS  
COT  
CURDATE  
CURRENT_DATABASE  
CURSOR_NAME 
CURTIME  
DATABASE  
DATETIME_INTERVAL_CODE  
DATETIME_INTERVAL_PRECISION  
DAYNAME  
DAYOFMONTH  
DAYOFWEEK  
DAYOFYEAR  
DEFINED  
DEFINER  
DEGREES  
DERIVED  
DIFFERENCE 
DISPATCH  
DYNAMIC_FUNCTION  
DYNAMIC_FUNCTION_CODE 
 

KEY_MEMBER  
KEY_TYPE  
LCASE  
LENGTH  
LOCATE  
LOG  
LOWER  
LTRIM  
M  
MESSAGE_LENGTH  
MESSAGE_OCTET_LENGTH  
MESSAGE_TEXT 
METHOD 
MOD  
MONTHNAME  
MORE  
MOUNT  
MUMPS 
NAME  
NOW  
NULLABLE  
NUMBER  
NULLIF 
OCTET_LENGTH  
OPTIONS  
ORDERING  
OVERLAPS  
OVERLAY  
OVERRIDING 
PASCAL  
PARAMETER_MODE  
OPTION  
PARAMETERS  
PARAMETER_NAME  
PARAMETER_ORDINAL_POSITION 
PARAMETER_SPECIFIC_CATALOG  
PARAMETER_SPECIFIC_NAME  
PARAMETER_SPECIFIC_SCHEMA  
PASSWORD  
PI  
PLI  
PLACING  
POSITION  
POWER  
RADIANS  
RAND 
REPEATABLE  
 

SOUNDEX  
SOURCE  
SPECIFIC_NAME  
SIMILAR  
SQL_TSI_DAY  
SQL_TSI_FRAC_SECOND  
SQL_TSI_HOUR  
SQL_TSI_MINUTE  
SQL_TSI_MONTH  
SQL_TSI_QUARTER  
SQL_TSI_SECOND  
SQL_TSI_WEEK  
SQL_TSI_YEAR  
SQRT  
SUBLIST  
SUBSTRING  
STATE  
STYLE 
SUBCLASS_ORIGIN  
SYMMETRIC  
SYSTEM  
TABLE_NAME  
TAN  
TIMESTAMPADD  
TIMESTAMPDIFF  
TOP  
TRANSACTIONS_COMMITTED  
TRANSACTIONS_ROLLED_BACK  
TRANSACTION_ACTIVE  
TRANSFORM  
TRANSFORMS  
TRANSLATE  
TRIGGER_CATALOG  
TRIGGER_SCHEMA  
TRIGGER_NAME  
TRIM  
TRUNCATE  
TYPE 
UCASE  
UNCOMMITTED  
UNNAMED  
UPPER  
USER_DEFINED_TYPE_CATALOG  
USER_DEFINED_TYPE_NAME  
USER_DEFINED_TYPE_SCHEMA  
WEEK  
      X 

 

 

NOTE: Words listed here are SQL Non-Reserved words and can be used freely. Some of these 
Non-Reserved Words may not be supported in the current version, but are reserved for future 
versions  of Daffodil DB. 



 
 
  

Daffodil DB          13 
 

Identifier 

 

An SQL identifier can be a Regular Identifier or it can be a Delimited Identifier. Delimited 
Identifiers are enclosed in double quotes. 

Syntax 

<Identifier>::= 

<regular identifier> 

<delimited identifier>  

Regular Identifier 

An SQL-99 identifier is a dictionary object identifier that conforms to the rules of SQL-99. SQL-
99 states that identifiers for dictionary objects are limited to 128 characters and are case-
insensitive (unless delimited by double quotes). User cannot use reserved words as identifiers for 
dictionary objects unless they are delimited. 

Syntax 

<regular identifier> ::= <identifier start> [ { <underscore> <identifier part>}… ] 

<identifier start> ::=<initial alphabetic character> 

<underscore> 

<identifier part> ::=<initial alphabetic character> 

<digit> 

<initial alphabetic character> ::= <simple latin lower case letter> 

<simple latin upper case letter> 

<simple latin lower case letter>::=  

a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z 

<simple latin upper case letter>::=  

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

<underscore> ::= _ 

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

Identifier Start 

Identifier Start should be an alphabetic character and an underscore. It should not contain any digit 
or special characters. 

Identifier Part 

Identifier Part should be an alphabetic character, an underscore and a sequence of digits. It should 
not include any special character except underscore. 



 
 
  

Daffodil DB          14 
 

 

Examples of valid identifiers 

ABCDEDF 

_ABCDE 

_A1234 

Examples of invalid identifiers 

1ABCD (starts with digit) 

Abc$% (includes special characters $ %) 

Delimited Identifier 

A delimited identifier is an identifier specified in double quotes. Any word, including keywords, can be 
a delimited identifier. Enclosing a name in double quotation marks preserves the case of the name. 
A reserved word can be part of an identifier, such as DEFAULT_TABLE, only to the extent when it is 
not exactly the same as the keyword itself. 

Syntax 

<delimited identifier> ::= <double quote> <delimited identifier body>... <double quote> 

<delimited identifier body> ::= <Simple Latin Letter>| <Special Characters>| <digit> 

Simple Latin Letter 

Simple Latin Letter is a collection of simple Latin upper case letter and a collection of simple 
Latin lower case letter. It means delimited identifier can contain any alphabetic character. 

Special Characters  

Special Characters is a collection of special character symbols like !@#$%^&*()-=+etc. and any 
digit (0-9). It means delimited identifier can contain any special character, as double quotes 
delimit the meaning of these characters in the identifier. 

The enclosing quotation marks are not the part of an identifier; they indicate only its beginning and 
end. To include a double quotation mark character in a delimited identifier, precede it with another 
double quotation mark. 

 

Example 

Valid Delimited Identifiers are: 

“SELECT” (double quotes delimit the meaning of reserved word “Select”) 

“$1234” (double quotes delimit the meaning of special character “$”) 

 



 
 
  

Daffodil DB          15 
 

Data Types 
 

Data type defines the type of data a column can contain. 

Syntax 

<data type> ::= 

<predefined type>  

| <domain name> 

Predefined Type 

These are the data types defined by Daffodil DB. They are: 

• Character String 
• Binary Large Object String 
• Numeric 
• Boolean 
• Date-time 

  

Syntax 

<predefined type> ::= 

<character string type> 

|<binary large object string type> 

| <numeric type> 

| Boolean 

| <date-time type> 

Character String Type 
It stores character (alphanumeric) data, which are words and free-form text, in the database 
character set. 

Syntax 

<character string type> ::= 

CHARACTER [ <left paren> <length> <right paren> ] 

| CHAR [ <left paren> <length> <right paren> ] 

| CHARACTER VARYING <left paren> <length> <right paren> 

| CHAR VARYING <left paren> <length> <right paren> 

| VARCHAR <left paren> <length> <right paren> 

| VARCHAR 



 
 
  

Daffodil DB          16 
 

| VARCHAR2 [ <left paren> <length> <right paren> ] 

| CHARACTER LARGE OBJECT [ <left paren> <large object length> <right paren> ] 

| CHAR LARGE OBJECT [ <left paren> <large object length> <right paren> ] 

| CLOB [ <left paren> <large object length> <right paren> ] 

| LONG VARCHAR [ <left paren> <large object length> <right paren> ] 

Character or Char 

The CHARACTER or char data type accepts character strings of a fixed length. Length of the 
character string should be specified in the data type declaration. 

Syntax character[(n)], char[(n)] 
 

Corresponding Compile-Time Java Type 
 

java.lang.String 
 

JDBC Metadata Type (java.sql.Types) 
 

CHAR 
 

Default Value  
 

Null 

Minimum Value  
 

N.A 

Maximum Value  
 

N.A 

Size 
 

N.A 

Maximum Size 
 

4 K 

Note:- 1). (n) OR (ln) means length in digits. 
          2). [(n)] OR [(ln)] means length in digits but optional. 
          3.) [(p[,(s)])] means precision and scale in digits but 
optional. 

 

Example 

CHARACTER (n) or Char (n) 

where, n represents the desired length of the character string. The length parameter may take any 
value from 1 to 4192. If length is not specified during the declaration, then 1 is taken by default. 

 



 
 
  

Daffodil DB          17 
 

Character Varying or Char Varying or Varchar or Varchar2 

This data type accepts character strings, of a variable length, up to the maximum length specified 
in the data type declaration. This declaration must include a positive integer in parentheses to 
define the maximum allowable character string length. 

Syntax character varying(n), char varying(n), 
varchar[(n)] 
 

Corresponding Compile-Time Java Type 
 

java.lang.String 
 

JDBC Metadata Type (java.sql.Types) 
 

VARCHAR 
 

Default Value  
 

Null 

Minimum Value  
 

N.A 

Maximum Value  
 

N.A 

Size 
 

N.A 

Maximum Size 
 

4 K 

Example 

VARCHAR (n) or VARCHAR2 (n) or CHAR VARYING (n) or CHARACTER VARYING (n) 
or VARCHAR or VARCHAR2 

It can accept any length of character string up to n characters in length. The length parameter may 
take any value from 1 to 4192. 

Character Large Object or Char Large Object or CLOB or Long Varchar 
These data type accepts character strings, of a large length, up to the maximum length specified in 
the data type declaration. These are mostly used for columns, which can have data more than 4192 
characters. 

Syntax character large object(ln), char large object(ln), 
clob[(ln)] 

Corresponding Compile-Time Java Type 
 

java.sql.Clob 
 

JDBC Metadata Type (java.sql.Types) 
 

CLOB 
 

Default Value  
 

Null 

Minimum Value  
 

N.A 

Maximum Value  
 

N.A 

Size 
 

N.A 



 
 
  

Daffodil DB          18 
 

Example 

CLOB (n) or CHAR LARGE OBJECT (n) or CHARACTER LARGE OBJECT (n) or LONG 
VARCHAR (n) 

It can accept any length of character string up to n characters in length. The length parameter may 
take any value from 1 to 1073741823. If large object length is not specified then 1073741823, is 
taken by default. 



 
 
  

Daffodil DB          19 
 

Binary Large Object String Type 

Syntax 

<binary large object string type> ::= 

BLOB [ <left paren> <large object length> <right paren> ] 

| LONG VARBINARY [ <left paren> <large object length> <right paren> ] 

| VARBINARY <left paren> <length> <right paren> 

| VARBINARY 

| BINARY [ <left paren> <length> <right paren> ] 

Binary 
The BINARY data type accepts binary strings, of a fixed length. Length of binary string should be 
specified in the data type declaration. 
 
Syntax binary[(n)] 

 
Corresponding Compile-Time Java Type 
 

java.lang.byte[] 
 

JDBC Metadata Type (java.sql.Types) 
 

BINARY 
 

Default Value  
 

Null 

Minimum Value  
 

-128 

Maximum Value  
 

127 

Size 
 

N.A 

Maximum Size 
 

4 K 

 

BINARY (n) 

Where, n represents desired length of the binary string. The length parameter may take any value 
from 1 to 4192. If no length is specified during the declaration, 1 is taken as default length. 



 
 
  

Daffodil DB          20 
 

Varbinary 

VARBINARY data type accepts binary strings of a variable length, which is up to the maximum 
length specified in the data type declaration. These declarations may include a positive integer in 
the parentheses to define maximum allowable character string length. 

Syntax varbinary[(n)] 
 

Corresponding Compile-Time Java Type 
 

java.lang.byte[] 
 

JDBC Metadata Type (java.sql.Types) 
 

VARBINARY 
 

Default Value  
 

Null 

Minimum Value  
 

-128 

Maximum Value  
 

127 

Size 
 

N.A 

Maximum Size 4 K 
 

 

Example 

VARBINARY (n) or  VARBINARY 

It can accept any length of binary string up to n characters in length. The length parameter may 
take any value from 1 to 4192. If no length is specified during the declaration, the default length is 
1. 

BLOB or Long Varbinary  
These data type accepts binary strings, of a large length, and is up to the maximum length 
specified in the data type declaration. These are mostly used for columns, which can have data 
more than 4192 characters. 

Syntax blob[(ln)] or long varbinary[(ln)] 
 

Corresponding Compile-Time Java Type 
 

java.lang.Blob 
 

JDBC Metadata Type (java.sql.Types) 
 

BLOB or  LONG VARBINARY 
 

Default Value  
 

Null 

Minimum Value  
 

N.A 

Maximum Value  
 

N.A 

Size 
 

N.A 

Maximum Size 
 

1 GB 



 
 
  

Daffodil DB          21 
 

Example 

BLOB(n) or LONG VARBINAY(n) 

It can accept any length of binary string up to n characters in length. The length parameter may 
take any value from length 1 to 1073741823. If large object length is not specified, then 
1073741823 is taken by default. 

Numeric Type  
The types which stores number type values. 

Syntax 

<numeric type> ::= 

<exact numeric type> 

|<approximate numeric type> 

Exact Numeric Type 
Exact numeric types are data types that store data in the form of numbers.  

Syntax 

<exact numeric type> ::= 

NUMERIC [ <left paren> <precision> [ <comma> <scale> ] <right paren> ] 

| DECIMAL [ <left paren> <precision> [ <comma> <scale> ] <right paren> ] 

| DEC [ <left paren> <precision> [ <comma> <scale> ] <right paren> ] 

| NUMBER [ <left paren> <precision> [ <comma> <scale> ] <right paren> ] 

| INTEGER 

| INT 

| SMALLINT 

| LONG 

| BYTE 

| TINYINT 

| BIGINT 



 
 
  

Daffodil DB          22 
 

NUMERIC or DECIMAL or DEC or NUMBER 

The DECIMAL, NUMERIC, NUMBER or DEC data types accept fixed-precision decimal 
values, for which you may define a precision and a scale in the data type declaration. The 
precision is a positive integer that indicates the number of digits that the number will contain. The 
scale is a positive integer that indicates a number of these digits that will represent decimal places 
to the right of the decimal point.  

Syntax numeric[(p[,(s)])] or decimal[(p[,(s)])] or 
dec[(p[,(s)])] 

Corresponding Compile-Time Java Type 
 

java.math.BigDecimal 
 

JDBC Metadata Type (java.sql.Types) 
 

NUMERIC or DECIMAL 

Default Value  
 

Null 

Minimum Value  
 

N.A 

Maximum Value  
 

N.A 

Size 
 

N.A 

Maximum Size 
 

Numeric(38), Decimal(28) 

 

These data types can be declared in any one of three different ways as illustrated.below. 

Examples 

DECIMAL – Precision defaults to 38, Scale defaults to 0 

DECIMAL (p) – Scale defaults to 0 

DECIMAL (p, s) – Precision and Scale are defined by the user 

NUMERIC – Precision defaults to 38, Scale defaults to 0 

NUMERIC (p) – Scale defaults to 0 

NUMERIC (p, s) – Precision and Scale are defined by the user 

DEC – Precision defaults to 38, Scale defaults to 0 

DEC (p) – Scale defaults to 0 

DEC (p, s) – Precision and Scale are defined by the user 

NUMBER – Precision defaults to 38, Scale defaults to 0 

NUMBER (p) – Scale defaults to 0 

NUMBER (p, s) – Precision and Scale are defined by the user 

In the above examples, p is an integer representing precision and s is an integer representing scale. 

 



 
 
  

Daffodil DB          23 
 

INTEGER or INT  
The INTEGER or INT data type accepts a 64-bit signed integer value with an implied scale of 
zero. It stores any integer value between the range 2^ -31 and 2^31 –1 (i.e. –2147483648 to 
2147483647). 

Syntax int, integer 
 

Corresponding Compile-Time Java Type 
 

java.lang.Integer 
 

JDBC Metadata Type (java.sql.Types) 
 

INTEGER 

Default Value  
 

Null 

Minimum Value  
 

-2147483648 
 

Maximum Value  
 

2147483647 
 

Size 
 

4 

Maximum Size 
 

N.A 

 

Examples of INTEGER or INT Valid Values 

-2147483648 

-1025 

0 

2147483647 

SMALLINT  

The SMALLINT data type accepts a 16 bit signed integer value with an implied scale of zero. It 
stores any integer value between the range 2^ -15 and 2^15 –1 (i.e. –32768 to 32767). 

Syntax smallint 
 Corresponding Compile-Time Java Type 

 
java.lang.Short 
 JDBC Metadata Type (java.sql.Types) 

 
SMALLINT 
 Default Value  

 
Null 

Minimum Value  
 

-32768 
 Maximum Value  

 
32767 
 Size 

 
2 

Maximum Size 
 

N.A 

 



 
 
  

Daffodil DB          24 
 

Examples of SMALLINT Valid Values 

-32768 

0 

32767 

LONG or BIGINT  

The LONG or BIGINT data type can accept numeric values up to 8 bytes. It stores any integer 
value between the range of 9223372036854775807 and -9223372036857447808. 

Syntax long, bigint 
 

Corresponding Compile-Time Java Type 
 

java.lang.Long 
 

JDBC Metadata Type (java.sql.Types) 
 

BIGINT 
 

Default Value  
 

Null 

Minimum Value  
 

-9223372036854775808 
 

Maximum Value  
 

9223372036854775807 
 

Size 
 

8 

Maximum Size 
 

N.A 

 

Examples of BIGINT or LONG Valid Values 

-3372036857447808 

-857447808 

0 

23372036854775807 



 
 
  

Daffodil DB          25 
 

BYTE or TINYINT 

The BYTE or TINYINT data type accepts an 8-bit signed integer value with an implied scale of 
zero. It stores any integer value between the range 2^ -7 and 2^7 –1 (i.e. –128 to 127). 

Syntax tinyint, byte 
 

Corresponding Compile-Time Java Type 
 

java.lang.Byte 
 

JDBC Metadata Type (java.sql.Types) 
 

TINYINT 
 

Default Value  
 

Null 

Minimum Value  
 

-128 
 

Maximum Value  
 

127 
 

Size 
 

1 

Maximum Size 
 

N.A 

 

Examples of BYTE or TINYINT Valid Values 

-128 

0 

127 

Approximate Numeric Type 
Approximate numeric data types stores data in form of numbers, which represents approximate 
values. 

Syntax 

<approximate numeric type> ::= 

FLOAT [<left paren> <precision> <right paren> ] 

| REAL 

| DOUBLE PRECISION 



 
 
  

Daffodil DB          26 
 

Float 

The FLOAT data type accepts a double precision floating point number value. If no precision is 
specified during the declaration, the default precision is 15. 

 

Syntax float[(n)] 
 

Corresponding Compile-Time Java Type 
 

java.lang.Double 
 

JDBC Metadata Type (java.sql.Types) 
 

FLOAT 
 

Default Value  
 

Null 

Minimum Value  
 

4.9E-324 
 

Maximum Value  
 

1.7976931348623157E308 
 

Size 
 

4 

Maximum Size 
 

15 

 

Examples of FLOAT (7) Valid Values 

1234567 

1.2 

123.45678 

-1234567 

-1.2 

-123.4567 



 
 
  

Daffodil DB          27 
 

Real  
The REAL data type accepts single-precision floating point number values. 

Syntax real 
 

Corresponding Compile-Time Java Type 
 

java.lang.Float 
 

JDBC Metadata Type (java.sql.Types) 
 

REAL 
 

Default Value  
 

Null 

Minimum Value  1.40E-45 
Maximum Value  3.4028235E38 

 
Size 
 

4 

Maximum Size 
 

N.A 

Examples of REAL Valid Values 

-2345 

0 

1E-3 

1.245 

123456789012345678901234567890 

Double Precision 

The DOUBLE PRECISION data type accepts a double precision floating point value. No 
parameters are required when declaring a DOUBLE PRECISION data type. 

Syntax double precision 
 

Corresponding Compile-Time Java Type 
 

java.lang.Double 
 

JDBC Metadata Type (java.sql.Types) 
 

DOUBLE 
 

Default Value  
 

Null 

Minimum Value  
 

4.9E-324 
 

Maximum Value  
 

1.7976931348623157E308 
 

Size 
 

8 

Maximum Size 
 

N.A 



 
 
  

Daffodil DB          28 
 

Examples of DOUBLE PRECISION Valid Values 

4567890123456789012345 

-1267890123456789012 

Boolean 
The BOOLEAN data type accepts a single value that can be TRUE or FALSE. No parameters 
are required when declaring a BOOLEAN data type. 

Syntax boolean 
 

Corresponding Compile-Time Java Type 
 

java.lang.Boolean 
 

JDBC Metadata Type (java.sql.Types) 
 

BOOLEAN 
 

Default Value  
 

Null 

Minimum Value  
 

N.A  

Maximum Value  
 

N.A  

Size 
 

1 

Maximum Size 
 

N.A 

 

Date-time Type 
The date-time data type can be DATE, TIME or TIMESTAMP. 

Syntax 

<datetime type> ::= 

DATE 

| TIME [ <left paren> <time precision> <right paren> ] 

| TIMESTAMP [ <left paren> <timestamp precision> <right paren> ] 



 
 
  

Daffodil DB          29 
 

Date 

The DATE data type accepts date values, consisting of Year, Month, and Day. Date values 
should be specified in the form YYYY-MM-DD. 

Month values must be between 1 and 12. 

Day values should be between 1 and 31 depending on the month and Year values should be 
between 0 and 9999. 

Values assigned to the DATE data type should be enclosed in single quotes, preceded by the 
keyword DATE. 

Syntax date 
 

Corresponding Compile-Time Java Type 
 

java.sql.Date 
 

JDBC Metadata Type (java.sql.Types) 
 

DATE 
 

Default Value  
 

Null 

Minimum Value  
 

N.A  

Maximum Value  
 

N.A  

Size 
 

10 

Maximum Size N.A 

 

Example 

DATE ’1999-04-04’. 



 
 
  

Daffodil DB          30 
 

Time 

The TIME data type accepts time values, consisting of Hours, Minutes, and Seconds. Time 
values should be specified in the form HH:MM:SS. 

The minutes and seconds values must be two digits. Hour values should be between zero 0 and 23. 
Minute values should be between 00 and 59 and Second values should be between 00 and 59. 
Values assigned to the TIME data type should be enclosed in single quotes, preceded by the 
keyword TIME. 

Syntax time[(n)] 
 

Corresponding Compile-Time Java Type 
 

java.sql.Time 
 

JDBC Metadata Type (java.sql.Types) 
 

TIME 
 

Default Value  
 

Null 

Minimum Value  
 

N.A  

Maximum Value  
 

N.A  

Size 
 

N.A 

Maximum Size 
 

9 

 

Example 

TIME ’07:30:00’. 



 
 
  

Daffodil DB          31 
 

Time Stamp 

The TIMESTAMP data type accepts timestamp values, which are a combination of a DATE 
value and a TIME value. Timestamp values should be specified in the form YYYY-MM-DD 
HH:MM:SS. 

There is a space separator between the date and time portions of the timestamp. Month values 
must be between 1 and 12. Day values should be between 1 and 31 depending on the month and 
Year values should be between 0 and 9999. Hour values should be between zero 0 and 23. Minute 
values should be between 00 and 59 and Second values should be between 00 and 59. Values 
assigned to the TIMESTAMP data type should be enclosed in single quotes, preceded by keyword 
TIMESTAMP. 

Syntax timestamp[(n)] 
 

Corresponding Compile-Time Java Type 
 

java.sql.TimeStamp 
 

JDBC Metadata Type (java.sql.Types) TIMESTAMP 
Default Value  
 

Null 

Minimum Value  
 

N.A  

Maximum Value  
 

N.A  

Size 
 

N.A 

Maximum Size 
 

9 

 

Example 

TIMESTAMP ’1999-04-04 07:30:00’. 

If the values are not in the specified ranges then Daffodil DB will convert them into valid values. 
Like if date is specified as 2001-12-31 then it will become 2002-01-01. 

Domain Name  

It is the name of the domain which represents data type with all its properties and constraints for 
value. Domains are defined, mainly when same properties of the data types are required 
frequently. 



 
 
  

Daffodil DB          32 
 

Literals 

 
Literals are a type of expression that specifies a constant value (they are also called constants). 
There are various types of literals like Numeric Literal, Character String Literal, and Date-Time Literal 
etc. 

<Literals>::= 

<Character String Literal> 

| <Date-Time Literal> 

| <Numeric Literal> 

| <Boolean Literal> 

Character String Literal 

The Character String Literal is a constant text literal. It can contain any alphabetic character, 
digit and special characters. The Character String Literal should be enclosed within single quotes. 
With the help of the quotes, database engine understands and treats it as constant. 

Syntax 

<character string literal>::= <quote> <text literal identifier body> <quote> 

Examples of valid Character String Literal 

‘abd323’ 

‘122djcvdj^**^*’ 

‘)()()()()(’ 

Examples of invalid Character String Literal 

 ‘cbcbmm 

“scbdcdcb 

Numeric Literal 

Numeric Literal is used to specify a valid integer, double etc in expressions, SQL functions, and 
SQL statements.  

Syntax 

<Numeric Literal>::= 

<Rep Digit>  

 <period> <Rep Digit> 

| <Rep Digit> <period> <Rep Digit> 

| <Rep Digit> {e | E} <Rep Digit> 

<Rep digit>::= <digit> 

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 



 
 
  

Daffodil DB          33 
 

A digit is one of 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9. 

e or E indicates that the number is specified in scientific notation. The digits after E specify 
exponent and digits before E specify mantissa. 

Examples of <Rep Digit> valid values 

0  

22  

33 

Examples of <Period> <Rep Digit> valid values 

23  

3 

Example of <Rep Digit> <period> <Rep Digit> valid values 

22.22  

2.33   

33.3 

Example of <Rep Digit> E <Rep Digit> valid values 

2E3  

2E34 

Date-Time Literal 

Date-Time Literal is used to specify a date literal, time literal and timestamp literal in 
expressions, SQL Statements and Functions. 

Syntax 

<Date Time Literal>::= 

<Date Literal> 

<Time Literal> 

<Time Stamp Literal> 

Date Literal 
Date Literal is used to specify a constant Date value in a specific format. This date value can be 
used in SQL Statements and Functions. 

Format for specifying a date literal is: DATE ‘YYYY-MM-DD’  

Syntax  

DATE ‘<unsigned integer> <hyphen> <unsigned integer> <hyphen> <unsigned integer>’  

<unsigned integer>::= <Rep Digit> 

<Rep Digit>::= <digit>. . .<hyphen>::= - 



 
 
  

Daffodil DB          34 
 

Examples of valid Date Literals 

DATE ‘2002-06-28’  

DATE ‘2001-06-28’  

Time Literal 
Time Literal is used to specify a constant Time value in a specific format. This Time value can 
be used in SQL Statements and Functions. 

Format for specifying a time literal is: TIME ‘HH:MM:SS’  

Syntax  

TIME ‘<unsigned integer> <colon> <unsigned integer> <colon> <unsigned integer>’  

<unsigned integer>::= <Rep Digit> 

<Rep Digit>::= <digit>. . . 

<colon>::= : 

Examples of valid Time Literals 

TIME ’ 12:06:12’  

TIME ’ 13:06:28’  

TimeStamp Literal 
TimeStamp Literal is used to specify a constant TimeStamp value in a specific format. This 
TimeStamp value can be used in SQL Statements and Functions. 

Format for specifying a TimeStamp literal is: TIMESTAMP ‘YYYY-MM-DD HH:MM:SS’  

Syntax  

TIMESTAMP ‘<unsigned integer> <hyphen> <unsigned integer> <hyphen> <unsigned integer> 
<space> <unsigned integer> <colon> <unsigned integer> <colon> <unsigned integer>’  

unsigned integer>::= <Rep Digit> 

<Rep Digit>::= <digit> 

<colon>::= : 

<space>::=   

Example of valid Timestamp Literals 

TIMESTAMP ’ 2002-06-28 12:06:12’  

TIMESTAMP ’ 2001-06-28 12:06:28’  



 
 
  

Daffodil DB          35 
 

Boolean Literal 
Boolean Literal is a single constant value specifying TRUE or FALSE.  

<Boolean Literal>::= 

TRUE 

FALSE 

Examples of valid Boolean Literals 

TRUE 

FALSE 



 
 
  

Daffodil DB          36 
 

Functions 
 

Daffodil DB provides few built-in functions to perform in-statement operations while querying or 
inserting data into a database. Functions are a type of SQL expression that return a value based on 
the argument they are supplied. 

<Functions>::=<Numeric Functions>  

<Date Time Functions> 

<String Functions> 

<System Functions> 

<Aggregate Functions> 

<Special Functions> 

Numeric Functions 

Numeric Functions accept numeric expression as input and return numeric values as output. There 
are various numeric functions like ATAN, TAN, and SQRT etc.  

Date Time Functions 

Date Functions accept Date Time Expression as input and return numeric or string values as 
output according to the return type of the function. There are various Date Time Functions like 
DAYNAME, YEAR and MONTH etc.  

String Functions 

String Functions accept String Expression as input and return string values as output. There are 
various String Functions like SUBSTRING, LTRIM and RTRIM etc.  

System Functions 

System Functions accept nothing as argument and return numeric or string values as output 
according to the return type of the function. There are various System Functions like DATABASE 
and USER etc.  

Aggregate Functions 

Aggregate Functions accept Expression as input and return numeric values as output. Aggregate 
Functions operate on group of records to perform aggregate operations. There are various 
Aggregate Functions like SUM, AVG and MAX etc.  

Special Functions 

There is only single Special Function, which takes numeric value as input. The function is Top 
Function. Functionality performed by Top Function is to select the topmost specified rows from 
Result Set as an output. 

If you call a built-in function with an argument of a data type other than the data type expected by 
the built-in function, Daffodil DB implicitly converts the argument to the expected data type 
before performing the required operation.  



 
 
  

Daffodil DB          37 
 

Numeric Functions 

Numeric Functions are special built-in functions for specific purposes. Numeric Functions either 
take zero, one or more numeric expressions as input. These functions act as special operators in 
the database identified by keywords in the database. Various functions are performed by these 
special operators like square root, floor, ceiling etc. 

Syntax 

<Numeric Functions> ::= 

<absolute value expression> 

<modulus expression> 

<sine function> 

<power function> 

<round function> 

<sqrt function> 

<truncate function> 

<floor function> 

<ceiling function> 

<log function> 

<exp function> 

<cos function> 

<tan function> 

<cot function> 

<acos function> 

<asin function> 

<atan function> 

<degrees function> 

<radians function> 

<pi function> 

<atan2 function> 

<rand function> 

<sign function> 



 
 
  

Daffodil DB          38 
 

Absolute Value Expression 
The absolute value expression is used to take absolute value of a numeric expression passed as an 
argument to it. 

Syntax 

ABS <left paren> <numeric expression> <right paren> 

Numeric Expression is passed as input to the absolute function. The function calculates and 
returns an absolute value of any given expression. 

If the argument is not negative, the argument is returned. 

If the argument is negative, the negation of the argument is returned. 

Example 

Select ABS (ParentMarksCarryingForward) as C from Exam 

The above query results in a Result Set containing absolute value of column 
‘ParentMarksCarryingForward’  under column heading ‘C’  

Result 

C C 

0 

25 

20 

20 

 



 
 
  

Daffodil DB          39 
 

Modulus Value Expression 
The modulus value expression is used to take modulus value of a numeric expression, dividend 
with divisor being numeric expression are passed as arguments. 

Syntax 

MOD <left paren> <numeric expression dividend> <comma> 

<numeric expression divisor> <right paren>   

<numeric expression dividend> ::= <numeric expression> 

<numeric expression divisor>  ::= <numeric expression> 

Numeric Expression dividend passed as input to modulus function is divided by Numeric 
Expression divisor and remainder is calculated and returns as the modulus value of an expression. 

Example 

Select MOD (ParentMarksCarryingForward, 2) as C from Exam 

The above query results in a Result Set containing modulated value of column 
‘ParentMarksCarryingForward’  under column heading ‘C’ . 

Result 

CC 

0.0 

1.0 

0.0 

0.0 

 



 
 
  

Daffodil DB          40 
 

Sine Function 
The sine function is used to calculate sine value of a numeric expression passed as an argument. 

Syntax 

SIN <left paren> <numeric expression> <right paren> 

Numeric Expression is passed as input to sine function. The function calculates and returns the 
trigonometric sine of an angle. Argument passed is: Angle in Radians. 

Example 

Select SIN (ParentMarksCarryingForward) as C from Exam 

The above query results in a Result Set containing trigonometric sine value of column 
‘ParentMarksCarryingForward’  under column heading ‘C’      

Result 

CC 

0.0 

-0.13235175009777303 

0.9129452507276277 

0.9129452507276277 

 
Power Function 
The power function is used to return value of the first argument raised to the power of the second 
argument.  

Syntax 

POWER <left paren> <numeric expression> <comma> <numeric expression> <right paren> 

If the second argument is positive or negative zero, then the result is 1.0.  

If the second argument is 1.0, then the result is the same as the first argument. 

Example 

Select Power (ParentMarksCarryingForward, 2) as C from Exam 

The above query results in a Result Set containing value of the column 
‘ParentMarksCarryingForward’  raised to the power 2 under column heading ‘C’ . 

Result 

CC 
0.0 
625.0 
400.0 
400.0 



 
 
  

Daffodil DB          41 
 

Rand Function 
Rand Function generates a random number using numeric expression passed as the initial seed. 

Syntax 

RAND <left paren> <numeric expression> <right paren> 

Numeric Expression is passed as input to a random function. The function calculates and returns a 
new random number generated using the argument passed. 

Example 

Select RAND (ParentMarksCarryingForward) as C from Exam where 
ParentMarksCarryingForward > 0 

The above query returns a random number using ‘ParentMarksCarryingForward’  as initial seed 
under column heading ‘C’ . 

Result 

CC 

0.7315948009490967 

0.7320427298545837 

0.7320427298545837 

 
SQRT Function 
SQRT Function calculates square root of a numeric expression passed as an argument. 

Syntax 

SQRT <left paren> <numeric expression> <right paren> 

Numeric Expression is passed as an input to the sqrt function. The function calculates and returns 
square root of the numeric expression. 

Example 

Select SQRT (ParentMarksCarryingForward) as C from Exam 

The above query returns square root of ‘ParentMarksCarryingForward’  under column heading ‘C’  
in the Result Set. 

Result 

CC 

0.0 

5.0 

4.47213595499958 

4.47213595499958 



 
 
  

Daffodil DB          42 
 

TRUNCATE Function 
TRUNCATE Function truncates the number (first argument numeric expression) to (second 
argument numeric expression) places. 

Syntax 

TRUNCATE <left paren> <numeric expression> <comma> <numeric expression> <right paren> 

First Argument Numeric Expression is the number to be truncated. 

Second Argument Numeric Expression is the places to which it is to be truncated.  

Example 

Select TRUNCATE (ParentMarksCarryingForward, 1) as C from Exam where 
ParentMarksCarryingForward  > 0 

The above query returns value of column ‘ParentMarksCarryingForward’  truncated to 1 place 
under column heading ‘C’  in the Result Set. 

Result 

CC 

25 

20 

20 

 
FLOOR Function 
The Floor function returns the largest (closest to positive infinity) double the value that is not 
greater than the argument and is equal to a mathematical integer. 

Syntax 

FLOOR <left paren> <numeric expression> <right paren> 

If the argument value is already equal to a mathematical integer, then the result is the same as the 
argument, it means Largest integer <= number. 

Argument passed is a Numeric Expression. 

Example 

Select FLOOR (ParentMarksCarryingForward) as C from Exam where ParentMarksCarryForward  
> 0 

Result 

CC 
25 

20 

20 



 
 
  

Daffodil DB          43 
 

CEILING Function 
The Ceiling function returns the smallest (closest to negative infinity) double the value that is not 
lesser than the argument and is equal to a mathematical integer.  

Syntax 

CEILING <left paren> <numeric expression> <right paren> 

If the argument value is already equal to a mathematical integer, then the result is the same as the 
argument, it means Smallest integer >= number. 

Argument passed is a Numeric Expression. 

Example 

Select CEILING (ParentMarksCarryingForward) as C from Exam where 
ParentMarksCarryingForward  > 0 

Result 

CC 

25 

20 

20 

 
LOG Function 
The Log function returns the natural logarithm (base e) of double the value passed as an argument. 

Syntax 

LOG <left paren> <numeric expression> <right paren> 

If the argument is less than zero, then the result is NaN. 

If the argument is positive infinity, then the result is positive infinity. 

If the argument is positive zero or negative zero, then the result is negative infinity. 

Argument passed is a Numeric Expression. 

Example 

Select LOG (-23) as C from Post 

Result 

CC 

NaN 

NaN 

NaN 

 



 
 
  

Daffodil DB          44 
 

Select LOG (23) as C from Post 

Result 

CC 

3.1354942159291497 

3.1354942159291497 

3.1354942159291497 

 
EXP Function 
The EXP function returns the exponential number e (i.e., 2.718...) raised to the power of double 
the value passed as an argument. 

Syntax 

EXP <left paren> <numeric expression> <right paren> 

Exponential function of an argument passed.  

Argument passed is a Numeric Expression. 

Example 

Select EXP (ParentMarksCarryingForward) as C from Exam where ParentMarksCarryingForward  
> 0 

Result 

C 

7.200489933738588E10 

4.8516519540979037E8 

4.8516519540979037E8 

 



 
 
  

Daffodil DB          45 
 

COS Function 
The COS function returns trigonometric cosine of an angle.  

Syntax 

COS <left paren> <numeric expression> <right paren> 

If the argument is NaN or infinity, then the result is NaN. 

Argument passed is Angle in Radians. 

Example 

Select COS (ParentMarksCarryingForward) as C from Exam 

The above query results in a Result Set containing trigonometric COS value of the column 
‘ParentMarksCarryingForward’  under the column heading ‘C’      

 

Result 

C C 

1.0 

-0.9912028118634736 

0.40808206181339196 

0.40808206181339196 

 
TAN Function 
The TAN function returns the trigonometric tangent of an angle. 

Syntax 

TAN <left paren> <numeric expression> <right paren> 

If the argument is NaN or infinity, then the result is NaN. 

Argument passed is Angle in Radians. 

Example 

Select TAN (ParentMarksCarryingForward) as C from Exam 

The above query  results in a Result Set containing trigonometric tan value of the column 
‘ParentMarksCarryingForward’  under column heading ‘C’ .     

Result 

C C 

0.0 
-0.13352640702153587 
2.237160944224742 
2.237160944224742 



 
 
  

Daffodil DB          46 
 

COT Function 
The COT function returns the trigonometric Cotangent of an angle in radians. 

Syntax 

COT <left paren> <numeric expression> <right paren> 

If the argument is NaN or infinity, then the result is NaN. 

Argument passed is Angle in Radians. 

Example 

Select COT (ParentMarksCarryingForward) as C from Exam 

The above query  results in a Result Set containing trigonometric COT value of the column 
‘ParentMarksCarryingForward’  under column heading ‘C’ .     

Result 

C C 

Infinity 

-7.489155308722675 

0.44699510899489167 

0.44699510899489167 

 
ACOS Function 
The ACOS function returns the arc cosine of an angle, in the range of 0.0 through pi.   

Syntax 

ACOS <left paren> <numeric expression> <right paren> 

If the argument is NaN or its absolute value is greater than 1, then the result is NaN. 

Parameter passed is double the value whose arc cosine is to be returned. 

Function returns arc cosine of the argument. 

 



 
 
  

Daffodil DB          47 
 

Example 

Select ACOS (ParentMarksCarryingForward) as C from Exam 

The above query results in a Result Set containing trigonometric arc COS value of column 
‘ParentMarksCarryingForward’  under column heading ‘C’ .     

Result 

C C 
1.5707963267948966 

NaN 

NaN 

NaN 
 
ASIN Function 
The ASIN function returns the arc sine of an angle, in the range of -pi/2 through pi/2.  

Syntax 

ASIN <left paren> <numeric expression> <right paren> 

If the argument is NaN or its absolute value is greater than 1, then the result is NaN. 

Parameter passed is a double value whose arc sine is to be returned. 

Function returns arc sine of the argument. 

Example 

Select ASIN (ParentMarksCarryingForward) as C from Exam 

The above query results in a Result Set containing trigonometric arc sin value of the column 
‘ParentMarksCarryingForward’  under column heading ‘C’  

Result  

C 

0.0 

NaN 

NaN 

NaN 

 
ATAN Function 
The ATAN function returns the arc tangent of an angle, in the range of -pi/2 through pi/2, where 
value of pi is 3.14 

Syntax 

ATAN <left paren> <numeric expression> <right paren> 

If the argument is NaN or infinity, then the result is NaN. 



 
 
  

Daffodil DB          48 
 

Argument passed is double the value whose arc tangent is to be returned.  

Returns arc tangent of the argument. 

Example 

Select ATAN (ParentMarksCarryingForward) as C from Exam 

The above query results in a Result Set containing trigonometric arc tan value of the column 
‘ParentMarksCarryingForward’  under column heading ‘C’ . 

 Result 

C C 

0.0 

1.5308176396716067 
1.5208379310729538 
1.5208379310729538 

 
DEGREES Function 
The Degrees function converts an angle measured in radians to the equivalent angle measured in 
degrees. 

Syntax 

DEGREES <left paren> <numeric expression> <right paren> 

Argument passed is an angle, in radians. 

Function returns the measurement of the angle passed in degrees. 

Example 

Select DEGREES (10) as C from Post 

Result 

C C 

572.9577951308232 

572.9577951308232 

572.9577951308232 

 



 
 
  

Daffodil DB          49 
 

RADIANS Function 
The Radians function converts an angle measured in degrees to the equivalent angle measured in 
radians. 

Syntax 

RADIANS <left paren> <numeric expression> <right paren> 

Argument passed is an angle, in degrees. 

Function returns measurement of the angle passed in radians. 

Example 

Select RADIANS (180) as RADIANS from Exam 

Result 

RADIANS 

3.14159265358979323 

3.14159265358979323 

3.14159265358979323 

3.14159265358979323 

 
PI Function 
The PI function Double the value that is closer than any other number to pi, the ratio of the 
circumference of a circle to its diameter.  

Value of PI is 3.141592653589793. 

Syntax 

PI <left paren> <right paren> 

Function returns the value of PI. 

Example 

Select PI () as PI from Exam 

Result 

PIPI 

3.141592653589793 

3.141592653589793 

3.141592653589793 

3.141592653589793 



 
 
  

Daffodil DB          50 
 

ATAN2 Function 
The ATAN2 function converts the rectangular coordinates (b, a) to polar (r, theta). 

This method computes the phase theta by computing the arc tangent of a/b in the range of -pi to pi. 

Syntax 

ATAN2 <left paren> <numeric expression> <comma> <numeric expression> <right paren> 

First Argument passed to a function is double the value, i.e. b. 

Second Argument passed to a function is double the value, i.e. a. 

Function returns theta component of the point (r, theta) in polar coordinates that corresponds to the 
point (b, a) in Cartesian coordinates. 

Example 

Select ATAN2 (360, 45) as C from Exam 

Result 

PIC 

1.446441332248135 

1.446441332248135 

1.446441332248135 

1.446441332248135 

 
ROUND Function 
The Round function is used to round a number towards its "nearest possible neighbor". Round 
Function rounds a number to places.  

Syntax 

ROUND <left paren> <numeric expression> <comma> <numeric expression> <right paren>  

First Argument is the number to be rounded. Second Argument is places to which the number 
should be rounded off. 

Example 

Select ROUND (5.671495, 4) as C from Post 

Result 

CC 

5.6715 

5.6715 

5.6715 



 
 
  

Daffodil DB          51 
 

SIGN Function 
The Sign Function determines the sign of the numeric expression passed as an argument.  

Syntax 

SIGN <left paren> <numeric expression> <right paren> 

Numeric Expression is passed as an argument.     

If Argument passed is less than zero (number < 0) then the result is negative (-1) 

If Argument passed is equal to zero (number == 0) then the result is zero (0). 

If Argument passed is greater than zero (number > 0) then the result is positive (1). 

Example 

Select SIGN (-1) as C from Post 

Result 

CC 

-1 

-1 

-1 

 



 
 
  

Daffodil DB          52 
 

Date Time Functions 

Date Time Functions are special built-in functions for specific purposes. Date Time Functions 
either take zero, one or more Date Time Expressions as Input. These functions act as special 
operators in the databases and are identified by keywords in the database. Various Functions are 
performed by these special operators like monthname, dayOfMonth and dayOfWeek etc. 

The declared data type of expression used in Date Time Functions is DATE, TIME or 
TIMESTAMP. 

Syntax 

<Date Time Functions> ::= 

<dayname function> 

| <dayofmonth function> 

| <dayofweek function> 

| <dayofyear function> 

| <week function> 

| <month function> 

| <year function> 

| <monthname function> 

| <hour function> 

| <minute function> 

| <second function> 

| <timestampadd function> 

| <timestampdiff function> 

| <Curdate function> 

| <Curtime function> 

| <Curtimestamp function> 

| |<Date function> 

| <Time function> 



 
 
  

Daffodil DB          53 
 

DAYNAME Function 
The DAYNAME function returns a character string representing day component of the date, name 
for the day, which is specific to the data source.  

For Example: Data Source is (Monday, Tuesday, Wednesday,…... Sunday) 

Syntax 

DAYNAME <left paren> <expression> <right paren> 

Example 

Select DAYNAME (DateOfJoining) as DateOfJoining from Teacher  

Result 

DAYNAME(DateOfJoining) 

WEDNESDAY 
TUESDAY 
FRIDAY 
SUNDAY 
SATURDAY 
TUESDAY 
TUESDAY 
SUNDAY 
 
DAYOFMONTH Function 
An integer from 1 to 31 representing day of the month in a date is returned upon calling the 
DAYOFMONTH function. 

Syntax 

DAYOFMONTH <left paren> <expression> <right paren> 

Example 

Select DayOfMonth (DateOfJoining) from Teacher 

Result 

DayOfMonth(DateOfJoining) 

17 
1 
25 
25 
29 
 15 
 15 
 25 
  



 
 
  

Daffodil DB          54 
 

DAYOFWEEK Function 
The DAYOFWEEK function returns an integer from 1 to 7 representing day of the week in a date; 
1 indicates that Sunday is returned after execution of this function. 

Syntax 

DAYOFWEEK <left paren> <expression> <right paren> 

Example 

Select DayOfWeek (DateOfJoining) from Teacher 

Result 

DayOfWeek(DateOfJoining) 
4 

3 

6 

1 

7 
 
3 
 
3 
 
1 
 
 
DAYOFYEAR Function 
An integer from 1 to 366 representing day of the year in a date is returned on executing the 
DAYOFYEAR function. 

Syntax 

DAYOFYEAR <left paren> <expression> <right paren> 

Example 

Select DayOfYear (DateOfJoining) from Teacher 

Result 

DayOfYear(DateOfJoining) 
108 
182 
268 
298 
241 
258 
258 



 
 
  

Daffodil DB          55 
 

WEEK Function 
An integer from 1 to 53 representing week of the year in a date is returned on executing the 
WEEK function. 

Syntax 

WEEK <left paren> <expression> <right paren> 

Example 

Select Week (DateOfJoining) from Teacher 

Result 

Week(DateOfJoining) 

16 
27 
39 
44 
35 
38 
44 
  
MONTH Function 
An integer from 1 to 12 representing month component of a date is returned on executing the 
MONTH function. 

Syntax 

MONTH <left paren> <expression> <right paren> 

Example 

Select MONTH (DateOfJoining) from Teacher 

Result 

MONTH(DateOfJoining) 

4 
7 
9 
10 
8 
 9 
 9 
 10 
  



 
 
  

Daffodil DB          56 
 

YEAR Function 
An integer representing year component of a date is returned on executing the YEAR function. 

Syntax 

YEAR <left paren> <expression> <right paren> 

Example 

Select YEAR (DateOfJoining) from Teacher 

Result 

YEAR(DateOfJoining) 

1996 
1997 
1998 
1998 
1998 
1998 
1998 
1998 

 
MONTHNAME Function 
A character string representing month component of a date is returned on executing the 
MONTHNAME function. 

The name for the month is specific to the data source.  

For Example Data Source is: (January, February, March, December) 

Syntax 

MONTHNAME <left paren> <expression> <right paren> 

Example 

Select MONTHNAME (DateOfJoining) from Teacher 

Result 

MONTHNAME(DateOfJoining) 

APRIL 
JULY 
SEPTEMBER 
OCTOBER 
SEPTEMBER 
OCTOBER 
OCTOBER 

 



 
 
  

Daffodil DB          57 
 

HOUR Function 
An integer from 0 to 23 representing hour component of time is returned on executing the HOUR 
function. 

Syntax 

HOUR <left paren> <expression> <right paren> 

Example 

Select HOUR (CURTIME ()) from Teacher 

Result 

HOUR(CURRENT_TIME) 

18 

18 

18 

18 

 
MINUTE Function 
An integer from 0 to 59 representing minute component of time is returned on executing the 
MINUTE function. 

Syntax 

MINUTE <left paren> <expression> <right paren> 

Example 

Select MINUTE (CURTIME ()) from Teacher 

Result 

MINUTE(CURRENT_TIME) 

32 

32 

32 

32 

 



 
 
  

Daffodil DB          58 
 

SECOND Function 
An integer from 0 to 59 representing second component of time is returned on executing the 
SECOND function. 

Syntax 

SECOND <left paren> <expression> <right paren> 

Example 

Select SECOND (CURTIME ()) from Teacher 

Result 

SECOND(CURRENT_TIME) 

34 

34 

34 

34 

 
TIMESTAMPADD Function 
The TIMESTAMPADD function returns the timestamp calculated by adding count number of the 
interval(s) to timestamp. An interval may be one of the following:  

SQL_TSI_FRAC_SECOND, SQL_TSI_SECOND, SQL_TSI_MINUTE, 

SQL_TSI_HOUR, SQL_TSI_DAY, SQL_TSI_WEEK, SQL_TSI_MONTH, 

SQL_TSI_QUARTER, or SQL_TSI_YEAR  

Syntax 

<timestamp denometers> ::= 

SQL_TSI_FRAC_SECOND 

| SQL_TSI_SECOND 

| SQL_TSI_MINUTE 

| SQL_TSI_HOUR  

| SQL_TSI_DAY 

| SQL_TSI_WEEK 

| SQL_TSI_MONTH 

| SQL_TSI_QUARTER 

| SQL_TSI_YEAR 

<timestampadd function> ::= 



 
 
  

Daffodil DB          59 
 

TIMESTAMPADD <left paren> <timestamp denometers> <comma> <expression1><comma> 
<expression2> <right paren> 

Timestamp Denometers 
This argument specifies interval of the Time Stamp to which count is to be added. There are 
various types of intervals like: 

SQL_TSI_FRAC_SECOND 

Interval is Seconds Fractional Part of Time Stamp. 

SQL_TSI_SECOND 

Interval is Seconds Part of Time Stamp. 

SQL_TSI_MINUTE 

Interval is Minutes Part of Time Stamp. 

SQL_TSI_HOUR  

Interval is Hours Part of Time Stamp. 

SQL_TSI_DAY 

Interval is Day Part of Time Stamp. 

SQL_TSI_WEEK 

Interval is Week Part of Time Stamp, in which Week timestamp lies. 

SQL_TSI_MONTH 

Interval is Month of Time Stamp. 

SQL_TSI_QUARTER 

Interval is Quarter Part of Time Stamp. The year in which quarter timestamp lies. 

SQL_TSI_YEAR 

Interval is Year Part of Time Stamp. 

Expression1 

This argument expression is a numeric value, which is to be added to a specified interval of Time 
Stamp. The declared data type of expression is numeric. 

Expression2 

Expression2 represents a Time Stamp to which required operations are to be performed. The 
declared data type of expression is TimeStamp. 

Return type of the function is an object of modified TimeStamp.  

Example 

Select TIMESTAMPADD (SQL_TSI_SECOND, 34, TIMESTAMP ’2002-06-28 17:12:12’) AS "TIME 
ADDITION IN SECONDS" from Exam 



 
 
  

Daffodil DB          60 
 

 

Result 

TIME ADDITION IN SECONDS 

2002-06-28 17:12:46.0 
2002-06-28 17:12:46.0 
2002-06-28 17:12:46.0 
2002-06-28 17:12:46.0 

Select TIMESTAMPADD (SQL_TSI_HOUR, 34, TIMESTAMP ’2002-6-28 17:12:12’) AS 
"TIME ADDITION IN HOURS" from Exam 

Result 

TIME ADDITION IN HOURS 

2002-06-30 03:12:12.0 

2002-06-30 03:12:12.0 

2002-06-30 03:12:12.0 

2002-06-30 03:12:12.0 

 
TIMESTAMPDIFF Function 
The TIMESTAMPDIFF function returns an integer representing the number of interval by which 
timestamp2 is greater than timestamp1.  

Interval may be one of the following:  

SQL_TSI_FRAC_SECOND, SQL_TSI_SECOND, SQL_TSI_MINUTE, SQL_TSI_HOUR, 
SQL_TSI_DAY, SQL_TSI_WEEK, SQL_TSI_MONTH, SQL_TSI_QUARTER, or 
SQL_TSI_YEAR 

Syntax 

TIMESTAMPDIFF <left paren> <timestamp denometers> <comma> <expression1> <comma> 
<expression2> <right paren> 

Timestamp Denometers 

This argument specifies the interval of Time Stamp whose count is to be returned. For various 
types of intervals, refer to the previous function. 

Expression1 

Expression1 represents Time Stamp, which is subtracted from the second argument. Declared data 
type of an expression is TimeStamp. 

Expression2 

Expression2 represents Time Stamp from which first argument is subtracted. Declared data type of 
an expression is TimeStamp. 

Return type of a function is count of the intervals. 



 
 
  

Daffodil DB          61 
 

Example 

Select TIMESTAMPDIFF (SQL_TSI_SECOND, TIMESTAMP ’2002-06-28 17:12:12’, 
TIMESTAMP ’2002-05-28 7:7:7’) AS "TIME DIFFERENCE IN SECONDS" from Exam 

Result 

TIME DIFFERENCE IN SECONDS 

-2714705 
-2714705 
-2714705 
-2714705 

Select TIMESTAMPDIFF (SQL_TSI_HOUR, TIMESTAMP ’2002-06-28 17:12:12’, TIMESTAMP 
’2002-06-28 7:7:7’) AS "TIME DIFFERENCE IN HOURS" from Exam 

Result 

TIME DIFFERENCE IN HOURS 

-10 

-10 

-10 

-10 

 
CURDATE Function 
The CURDATE function returns the Current Date of an SQL Session. The declared data type of 
the function is DATE. 

Syntax 

CURDATE <left paren> <right paren> 

Example 

Select CURDATE () as CURDATE   from Exam 

Result 

CURDATE 

2003-10-30 

2003-10-30 

2003-10-30 

2003-10-30 



 
 
  

Daffodil DB          62 
 

CURTIME Function 
The CURTIME function returns Current Time of an SQL Session. The declared data type of the 
function is TIME. 

Syntax 

CURTIME <left paren> <right paren> 

Example 

Select CURTIME () as CURTIME from Exam 

Result 

CURTIME _TIME 

18:32:23 
18:32:23 
18:32:23 
18:32:23 

CURTIMESTAMP Function 
Returns Current Timestamp of an SQL Session. The declared data type of the function is 
timestamp. 

Syntax 

CURTIMESTAMP <left paren> <right paren> 

Example 

Select CURTIMESTAMP () as CURTIMESTAMP   from Exam 

Result 

CURTIMESTAMP 

2002-06-28 17:12:46.0 

2002-06-28 17:12:46.0 

2002-06-28 17:12:46.0 

2002-06-28 17:12:46.0 

 



 
 
  

Daffodil DB          63 
 

DATE Function 

 
Date function extract date from timestamp. Argument passed to the function is timestamp and 
declared data type of the function is DATE.  
Syntax 

DATE <left paren> <expression> <right paren> 

Example 

Select DATE (Timestamp ‘2002-06-30 12:12:12’ ) as DateOfJoining from Teacher  

 

Result 

(DateOfJoining) 

2002-06-30 

2002-06-30 

2002-06-30 

2002-06-30  

TIME Function 

Time functions extract time from timestamp. Argument passed to the function is timestamp and 
Declared Data type of the function is time  
Syntax 

TIME <left paren> <expression> <right paren> 

Example 

Select TIME (Timestamp ‘2002-06-30 12:12:12’ ) as TimeOfJoining from Teacher 

Result 

(TimeOfJoining) 
17:12:12 
17:12:12 
17:12:12 
17:12:12 

 



 
 
  

Daffodil DB          64 
 

String Functions 

String Functions are special built-in functions for specific purposes. String Functions either take 
zero, one or more String expressions as Input. These functions act as special operators in the 
databases, identified by keywords in a database. Various Functions are performed by these special 
operators, for e.g. lcase, ucase, right and left functions and so on. 

Syntax 

<String Functions> ::= 

<ASCII value method> 

| <left function> 

| <right function> 

| <space function> 

| <replace function> 

| <repeat function> 

| <soundex function> 

| <insert function> 

| <difference function> 

| <concat function> 

| <locate function> 

| <lcase function> 

| <ucase function> 

| <ltrim function> 

| <rtrim function> 

| <char function> 

| <length function> 

| <substring function> 

| <EqualsCaseSensitive function> 

 



 
 
  

Daffodil DB          65 
 

ASCII Value Function 
The String function ASCII returns an Integer representing ASCII code value of the leftmost 
character in a string. 

Syntax 

ASCII <left paren> <String Expression> <right paren> 

Examples 

Select ASCII (SubjectName) AS "ASCII VALUE" from Subject  

The above query retrieves an ASCII code value of the leftmost character in the SubjectName from 
a Subject table. 

Result 

ASCII VALUE 

66 

69 

77 

83 

83 

 



 
 
  

Daffodil DB          66 
 

Left Function 
The Left Function returns count of the leftmost characters from a string. 

Syntax 

LEFT <left paren> <String Expression> <comma> <string length> <right paren> 

<string length> ::= <unsigned integer> 

First Argument String Expression is a String from which number of characters is to be retrieved. 

Second Argument String Length is the number of the characters to be retrieved. 

Examples 

Select left (StudentName, 4) as "LEFT MOST" from Student 

The above query retrieves 4 leftmost characters for each student name from the ‘Student’ table. 

Result 

LEFT MOST 

Cath 

John 

Cath 

John 

Woll 

Vali 

Lieb 

Will 

Tove 

Wink 

 



 
 
  

Daffodil DB          67 
 

Right Function 
The Right Function returns count of the rightmost characters from a string. 

Syntax 

RIGHT <left paren> <String Expression> <comma> <string length> <right paren> 

<string length> ::= <unsigned integer> 

First Argument String Expression is a String from which number of characters is to be retrieved. 

Second Argument String Length is the number of the characters to be retrieved. 

Examples 

Select right (StudentName, 3) as "RIGHT MOST" from Student 

The above query retrieves 3 rightmost characters for each student name from the Student table. 

Result 

RIGHT MOST 

ine 

ohn 

the 

ohn 

oll 

ine 

big 

ams 

era 

eld  

 



 
 
  

Daffodil DB          68 
 

Space Function 
The String function Space returns a character string consisting of a number of specified spaces. 

Syntax 

SPACE <left paren> <string length> <right paren> 

Examples 

Select space (5) AS "SPACES"  from Post 

The above query retrieves the String containing 5 spaces from the Post table 

Result 

SPACES 

       
 
 
 
Replace Function 
The String function Replace, replaces all the occurrences of string2 in string1 with String3. 

Syntax 

REPLACE <left paren> <String Expression> <comma> <String Expression> <comma> <String 
Expression> <right paren>  

Second String Expression is a substring in the First String Expression to be replaced with the third 
String Expression. 

Examples 

Select replace (TeacherName,’Mr.’,’Shri’) AS REPLACEMENT from Teacher 

The above query replaces all the occurrences of String ‘Mr.’  with String ‘Shri’  in the 
TeacherName Column of the Teacher Table. 

Result 

REPLACEMENT 
Shri Agregado 

Shri Brumfield 

Ms. McKelvey 

Shri Everett 

Shri Verstrepen 

Shri Haight 

Ms. Hartenfeld 

Shri Henry 



 
 
  

Daffodil DB          69 
 

Repeat Function 
The String function Repeat returns a character string formed by repeating the number of string 
count times. 

Syntax 

REPEAT <left paren> <String Expression> <comma> <numeric expression> <right paren> 

Examples 

Select repeat (PostName, 2) AS REPEAT_TWO_TIMES from Post  

The above query retrieves post names by repeating the string count two times. 

Result 

REPEAT_TWO_TIMES 

PrincipalPrincipal 
Vice PrincipalVice Principal 
TeacherTeacher 

 
Soundex Function 
The scalar function SOUNDEX returns a character string, which is data source-dependent, 
representing sound of words in a string; it could be a four-digit SOUNDEX code, a phonetic 
representation of each word, etc. 

Syntax 

SOUNDEX <left paren> <String Expression> <right paren>  

Examples 

Select soundex (StudentName) AS SOUNDEX_CODE from Student 

The above query retrieves a four-digit code for each student name from the Student table. 

Result 

SOUNDEX_CODE 

C365 

J500 

C300 

J500 

W400 

V450 

L120 

W452 

T160 

W521 

 



 
 
  

Daffodil DB          70 
 

Insert Function 
The string function INSERT returns a character string formed by deleting length of characters from 
string1 beginning at start, and inserting string2 into string1 in the beginning. 

Syntax 

INSERT <left paren> <String Expression> <comma> <numeric expression>  

<comma> <numeric expression> <comma> <String Expression> <right paren> 

First String Expression Argument is a String in which another String needs to be inserted. 

Start is the index from which Length characters need to be deleted. 

Second String Expression is a String to be inserted at the index Start. 

Examples 

Select insert (TeacherName, 1, 3, ’Shri’) AS REPLACEMENT From Teacher 

The above query replaces 3 characters starting at index 1 and replaces with it String ‘Shri’ . 

Result 

REPLACEMENT 

Shri Agregado 

Shri Brumfield 

Shri McKelvey 

Shri Everett 

Shri Verstrepen 

Shri Haight 

Shri Hartenfeld 

Shri Henry 

 



 
 
  

Daffodil DB          71 
 

Difference Function 
The string function DIFFERENCE returns an Integer indicating the difference between values 
returned by the function SOUNDEX for string1 and string2. 

Syntax 

DIFFERENCE <left paren> <String Expression> <comma> <String Expression> <right paren> 

Examples 

Select difference (StudentName, ’John’) AS ’’DIFFERENCE’’ from Student 

The above query retrieves difference between the values returned by the function SOUNDEX for 
each student name and student address from the Student table. 

Result 

DIFFERENCE 

0 

4 

2 

4 

2 

1 

1 

0 

1 

1 

 



 
 
  

Daffodil DB          72 
 

Concat Function 
The string function CONCAT returns a Character string formed by appending string2 to string1; if a 
string is null, then the result is DBMS dependent. 
The CONCAT scalar function is similar to the concatenation operator. However, the concatenation 
operator allows easy concatenation of more than two character expressions, while the CONCAT 
function requires nesting. 
 

Syntax 

CONCAT <left paren> <String Expression> <comma> <String Expression> <right paren> 

First String Expression is a String in which another String needs to be concatenated. 

Second String Expression is a String to be concatenated with the First String Expression. 

Examples 

Select concat (StudentName, ’Calera’) AS "NEW NAMES" from Student 

The above query retrieves student names after appending ‘Calera’  with each student name from 
the Student table. 

Result 

NEW NAMES 

Catherine Calera 

John Calera 

Cathe Calera 

John Calera 

Woll Calera 

Valine Calera 

Liebig Calera 

Williams Calera 

Tovera Calera 

WinkField Calera 

 



 
 
  

Daffodil DB          73 
 

Locate Function 
The string function LOCATE returns the location of the first occurrence of string1 in string 2, 
searching from the beginning of string 2. 
If start is specified, then search begins from the position start. 0 is returned if string2 does not contain 
string1. If either string is null, LOCATE returns a null value. 

Position 1 is the first character in string2. 

Syntax 

LOCATE <left paren> <String Expression> <comma> <String Expression> [<comma> <numeric 
expression> ] <right paren> 

First String Expression is the String in which another String is to be located. 

Second String Expression is the String to be located in the First String Expression. 

Examples 

Select locate (StudentName,’John’) AS "FIND JOHN" from Student 

The above query retrieves location of ‘John’  from the Student table. 

Result 

FIND JOHN 

0 

1 

0 

1 

0 

0 

0 

0 

0 

0 

 



 
 
  

Daffodil DB          74 
 

Lcase Function 
The string function LCASE returns the result after converting all the characters in a string to 
lowercase. 

Syntax 

LCASE <left paren> <String Expression> <right paren>  

Examples 

Select lcase (TeacherName) as "LOWER CASE NAMES OF TEACHERS" from Teacher 

The above query retrieves the name of teachers in lowercase. 

Result 

LOWER CASE NAMES OF TEACHERS 

mr. agregado 

mr. brumfield 

ms. mckelvey 

mr. everett 

mr. verstrepen 

mr. haight 

ms. hartenfeld 

mr. henry 

 



 
 
  

Daffodil DB          75 
 

Ucase Function 
The string function UCASE returns the result after converting all the characters in a string to 
uppercase 

Syntax 

UCASE <left paren> <String Expression> <right paren> 

Examples 

Select ucase (TeacherName) as "UPPER CASE NAMES OF TEACHERS" from Teacher 

The above query retrieves the name of teachers in uppercase. 

Result 

UPPER CASE NAMES OF TEACHERS 

MR. AGREGADO 

MR. BRUMFIELD 

MS. MCKELVEY 

MR. EVERETT 

MR. VERSTREPEN 

MR. HAIGHT 

MS. HARTENFELD 

MR. HENRY 

 



 
 
  

Daffodil DB          76 
 

Ltrim Function 
The String function LTRIM removes all the characters of a string with leading blank spaces. 

Syntax 

LTRIM <left paren> <String Expression> <right paren> 

Examples 

Select ltrim (StudentName) AS "NAMES AFTER LEFT TRIMMING" from Student 

The above query retrieves name of students after removing the leading blank spaces from Student 
table. 

Result 

NAMES AFTER LEFT TRIMMING 

Catherine 

John 

Cathe 

John 

Woll 

Valine 

Liebig 

Williams 

Tovera 

WinkField 

 



 
 
  

Daffodil DB          77 
 

Rtrim Function 
The String function RTRIM retrieves characters of a string with no trailing blanks. 

Syntax 

RTRIM <left paren> <String Expression> <right paren> 

Examples 

Select Rtrim (StudentName) AS "NAMES AFTER RIGHT TRIMMING" from Student 

The above query retrieves names of students after removing trailing blank spaces from the Student 
table. 

Result 

NAMES AFTER RIGHT TRIMMING 

Catherine 

John 

Cathe 

John 

Woll 

Valine 

Liebig 

Williams 

Tovera 

WinkField 

 



 
 
  

Daffodil DB          78 
 

Char Function 
The scalar function CHAR returns a Character with ASCII value code, where code is between 0 and 
255 

Syntax 

CHAR <left paren> <numeric expression> <right paren> 

Examples 

Select char (65) AS "CHAR VALUE" from Post 

Result 

CHAR VALUE 

A 

A 

A 

 
Length Function 
The string function LENGTH returns the number of characters in a string, excluding trailing blanks. 

Syntax 

LENGTH <left paren> <String Expression> <right paren> 

String Expression is a String for which length is to be calculated. 

Examples 

Select length (TeacherName) AS LENGTH from Teacher 

The above query retrieves a number of characters in the teacher name column from Teacher table. 

Result 

LENGTH 

12 

13 

12 

11 

14 

 



 
 
  

Daffodil DB          79 
 

Substring Function 
The String function SUBSTRING retrieves a character string formed by extracting length of 
characters from a string; beginning from start. 

Syntax 

SUBSTRING <left paren> <string expressions> <comma> <numeric expression> 
<comma><numeric expression> <right paren> 

<string expressions> ::= Any String  

First String Expression Argument is a String from which a substring is to be retrieved. 

First Numeric Expression Argument is the start index from where a substring is to be retrieved. 

Second Numeric Expression Argument retrieves the number of characters to be retrieved. 

Examples 

Select substring (TeacherName, 4, 2) AS SUB_STRING from Teacher 

The above query retrieves a substring from the teacher name starting at an index of 4 of length = 
6. 

Result 

SUB_STRING 

A 

B 

M 

E 

V 

H 

H 

H 

 



 
 
  

Daffodil DB          80 
 

EqualsCaseSensitive Function 
EqualsCaseSensitive retrieve true or false after checking the equality of two strings. It is a case 
sensitive function. It retrieve false if  alphabets of one string are in  different case from other. 

Syntax 

EQUALSCASESENSITIVE <left paren> <string expressions> <comma> <string expressions>  
<right paren> 

 String expressions are parameters of equalscasesensitive function. 

Examples 

Select EqualsCaseSensitive (TeacherName, ’Mr. Agregado’)  AS STRING_EQUALITY from 
Teacher 

The above example retrieves a substring from the teacher name starting at an index of 4 of length 
= 6. 

Result  

STRING_EQUALITY 

True 

false 

false 

false 

false 

false 

false 

false 

 



 
 
  

Daffodil DB          81 
 

System Functions 

System Functions are certain built-in functions, which are used to perform activities like they are 
used to return current database name, current user name etc. 

 

<System Functions>::= 

<Current Database function> 

| <user function> 

| <ifnull function> 

Current Database Function or CURRENT_DATABASE 
Current Database Function returns the name of current database in the SQL Session. 

Syntax 

DATABASE <left paren> <right paren> 

Example 

Select Database () as ’’DATABASE NAME’’ from Exam 

Result 

 DATABASE NAME 

school 
school 
school 
school 
 
User Function or CURRENT_USER 
The User function returns the name of a current user in the SQL Session. 

Syntax 

USER <left paren> <right paren> 

Example 

Select USER () from Exam 

Result 

User() 

daffodil 
daffodil 
daffodil 
daffodil 
 
 



 
 
  

Daffodil DB          82 
 

IFNULL Function 
The IFNULL function performs a special task of checking the ‘if’  condition.  

It checks for the null ness of the first expression. If value of the first expression is null then second 
expression is returned, otherwise value of first expression is returned. 

Syntax 

IFNULL <left paren> <expression1> <comma> <expression2> <right paren> 

Example 

Select IFNULL (postname,'not found') as POST_NAMES from post 

Result 

POST_NAMES 

Principal 
VicePrincipal 
Teacher 

Special Functions 

There is only one special function namely TOP function. This function performs special purpose 
task. It is used to specify number of rows to be retrieved in a Result Set. 

TOP Function 
The TOP function enables us to control the number of rows to appear in the Result Set of a query 
result. We can specify the count ‘n’  to instruct query engine to retrieve only the specified topmost 
count of rows. 

Syntax 

TOP <left paren> <unsigned integer> <right paren> 

Unsigned Integer 

Unsigned Integer is any valid SQL integer, i.e. it should consist of digits (0-9). 

This integer specifies the count of topmost rows to be retrieved in the Result Set. This integer can 
not be negative. 

Example 

Select TOP (5) floor ((marks*100)/500) as Percentage, StudentID, SubjectID from Marksrecord 

Result 

Percentage StudentID SubjectID 

19 1 1 
17 1 2 
19 1 3 
15 1 4 
10 1 5 

The query stated above is another form of SELECT queries, where we have used TOP function to 
list the top 5 students from the list. To display implementation of the mathematical expression in  



 
 
  

Daffodil DB          83 
 

SELECT statement, we have calculated the percentage taking maximum marks as 500. Alsothe 
column aliasing has been used in the query, where first column has been renamed to Percentage. 

Aggregate Functions 

Aggregate functions return a single result row based on groups of the rows, rather than on single 
rows. Aggregate functions can appear in select lists and in ORDER BY and HAVING clauses. 
They are commonly used with the GROUP BY clause in a SELECT statement, where Daffodil 
DB divides the rows of a queried table or view into groups. In a query containing GROUP BY 
clause, elements of the select list can be aggregate functions, GROUP BY expressions, constants, 
or expressions involving one of these. 

Aggregate functions are applied to each group of rows and return a single result row for each 
group. In the absence of GROUP BY clause, Aggregate functions are applied in the select list to 
all the rows in the queried table or view. We use aggregate functions in the HAVING clause to 
eliminate groups from the output based on the results of the aggregate functions, rather than on the 
values of the individual rows of the queried table or view. 

Aggregate functions are set of functions that apply over a set of column values and return a scalar 
value. Daffodil DB provides a number of Aggregate functions with each function operating over a 
set of column values and resulting in a single value. 

Syntax 

<set function specification> ::= 

COUNT <left paren> <asterisk> <right paren> 

| <general set function> 

<general set function> ::= 

<set function type> <left paren>  < Aggregate Expression> <right paren> 

<set function type>  ::= 

AVG | MAX | MIN | SUM 

| COUNT 

< Aggregate Expression > ::=  

<Numeric Expression> 

<Constant> 

| <Column Reference> 

Count 

COUNT is an Aggregate function used to count number of records corresponding to a column or 
record. It takes a Numeric Expression or ‘asterisk’  (*) as its argument.Example 

Select COUNT (*) from post. 

Result 

COUNT(*) 

3 



 
 
  

Daffodil DB          84 
 

Result of the query mentioned above is simply count of the record in the Table Post. 

Avg 

AVG is an Aggregate function used to calculate average of the values corresponding to a column 
specified as its argument. 

SELECT AVG (ABS (marks)) AS AVERAGE FROM MarksRecord GROUP BY ExamID 

Result 

AVERAGE 

���������� 
Sum 

SUM is an Aggregate function used to calculate sum of all the values corresponding to a column 
specified as its argument. 

Select SUM (marks*2) from MarksRecord where StudentID =5 

Result 

SUM(marks*2) 

956 

In the above example, result will be sum of all the marks multiplied by 2 corresponding to the 
student whose StudentId is 5. 

Max/Min 

MAX is an Aggregate function that finds the maximum value among all the available values 
corresponding to a column specified as its argument. On the contrary, MIN is an aggregate 
function that selects minimum value among all the available values corresponding to a column 
specified as its argument.  

All aggregate functions except COUNT (*) and GROUPING ignore nulls. COUNT never returns 
Null, returns either a number or zero. For all the remaining aggregate functions, if data set 
contains no rows, or contains only rows with nulls as arguments to the aggregate function, then the 
function returns NULL. Nesting of Aggregate functions is also possible. For example, the 
following example calculates the average of the maximum marks of all the Exams held. 

Select MAX (marks) from MarksRecord where ExamID <> 5 

Result 

MAX(marks) 

99 

In the above example, result will be Maximum marks in all the exams except that for which 
ExamID is 5. 



 
 
  

Daffodil DB          85 
 

Expression 
 

An expression is a combination of one or more values, operators, and SQL functions that evaluate 
to a value. An expression generally assumes the data type of its components. An Expression is a 
valid SQL expression (according to SQL-99 Standards) that can comprise of a Numeric 
Expression, Boolean Expression, String Expression or Expression Primary. 

Syntax 

<Expression> ::= 

<Numeric Expression> 

<Boolean Expression> 

| <String Expression> 

| <Expression Primary> 

Numeric Expression 

Numeric Expression is a type of expression that can be used to perform numeric operations.  

Boolean Expression 

Boolean Expression is a type of expression that returns a Boolean value. Boolean Precedence is to 
be applied properly while solving any Boolean Expression. 

String Expression 

String Expression represents a set of characters. Two String Expressions can be joined together 
through concatenation operator. 

Expression Primary 

Expression Primary can either be a SubQuery, Constant, Column Reference, Multi-Valued 
Expression or a Parenthesized Expression. 

Expression Precedence 

Precedence of operations from highest to lowest is: 

(), ?,  

unary + and - 

*, /, || (concatenation) 

binary + and - 

NOT 

AND 

OR 

?: (Conditional) 

You can explicitly specify precedence by placing expressions within parentheses. An expression 
within parentheses is evaluated before any operations outside the parentheses are applied to it. 



 
 
  

Daffodil DB          86 
 

Example 

(3+4)*9 

In the above example although precedence of * is greater than +, but since parenthesis has highest 
precedence, first of all expression inside the parenthesis will be evaluated and then the result will 
be evaluated with *. 

On the other hand in 

3+4*9 

First * will be evaluated and thereafter the result will be evaluated using + operator. 

Numeric Expression 

Numeric Expression is any kind of valid expression that contains plus sign, minus sign, asterisk 
and/or solidus in between two Numeric Expressions or it could be a simple factor. Numeric 
Expression is used to perform arithmetic operations. A valid plus or a minus sign can also be 
applied in a valid Numeric Expression. All the Numeric Expression will be evaluated by applying 
the proper Expression Precedence as mentioned above. 

Syntax 

<Numeric Expression> ::= 

<term> 

| <Numeric Expression> <minus sign> <term> 

| <Numeric Expression> <plus sign> <term> 

<term> ::= 

<factor> 

| <term> <asterisk> <factor> 

| <term> <solidus> <factor> 

<factor> ::= 

[ <sign> ] <Numeric primary> 

<Numeric Primary> ::=  

<Expression Primary> 

<Numeric Functions>  

|  <Date Time Functions> 

<sign>  ::= <plus sign> | <minus sign> 

<plus sign> ::= + 

<minus sign> ::= - 

<asterisk> ::= * 

<solidus> ::= / 



 
 
  

Daffodil DB          87 
 

Numeric Primary  

A Numeric Primary can be a valid Expression Primary, valid Numeric Function or a valid Date 
Time Functions. 

Term  

A term in turn can be a valid factor or valid term asterisk / solidus factor.  

Factor 

A Factor can be a valid Expression Primary with or without sign. 

Numeric Functions  

A Numeric function is a set of Numeric functions like SIN, COS, TAN, TRIM etc. 

Date Time Functions  

These include several Date Time Functions like DAYNAME, DAYOFWEEK etc. 

Sign  

A sign could be either plus sign or minus sign. 

Examples 

(a * b + c / d) + 2 is a valid Numeric expression. 

Here the expression inside the parenthesis will be evaluated first. Further the Expression inside the 
parenthesis will be treated itself as an Expression and Expression precedence will be properly 
applied over it. Further the result will be solved using the + operator. 

In case of Numeric Expression, Multi-valued Expressions are not supported.  

Boolean Expression 

Boolean Expressions are any kind of valid expression that contains AND / OR in between two 
Boolean Expression, Boolean Primary or simply a Truth value. Boolean Expressions are used to 
perform Boolean operations that results in TRUE or FALSE value. Boolean expressions are 
allowed in a number of places, most notably in WHERE clauses, but also in check constraints and 
VALUES expressions. A Boolean expression can include a Boolean operator or operators. These 
are listed. 

Syntax 

<Boolean Expression> ::= 

<boolean term> 

| <boolean expression> OR <boolean term> 

<boolean term> ::=  

<boolean factor> 

|<boolean term> AND <boolean factor> 

<boolean factor> ::= 

[ NOT ] <boolean test> 



 
 
  

Daffodil DB          88 
 

<boolean test> ::= 

 

<boolean primary> [ IS [ NOT ] <truth value> ] 

<truth value> ::= 

TRUE | FALSE 

<boolean primary> ::= 

<parenthesized Boolean expression> 

<Expression primary> 

| <predicate> 

<parenthesized Boolean expression> ::= 

<left paren> <Boolean expression> <right paren> 

Boolean Expression 

A Boolean Expression can be a valid Boolean Primary, truth value or a valid Boolean Expression 
AND/OR Boolean term. 

Boolean Term 

A Boolean term in turn can be a valid Boolean factor or Boolean term AND Boolean factor.  

Boolean factor 

Boolean factor further could be any Boolean Test with or without NOT before it. 

Boolean Primary 

Boolean Primary further can be represented using parenthesized Boolean Expression, Expression 
Primary or a Predicate. Truth Value may be TRUE or FALSE. 

Example 1 

Select * from post where postID < 10 AND postID > 3 OR postName <> ’Principal’ 

Here in the above example postID < 10 AND postID > 3 OR postName <> ‘Principal’ is an 
example of valid Boolean Expression. 

Result 

PostID PostName PostRank 

2 Vice Principal 2 

3 Teacher 3 

 

Example 2 

Select * from post where TRUE 

Here in the above example simply ‘TRUE’  is also an example of valid Boolean Expression. 



 
 
  

Daffodil DB          89 
 

Result 

PostID PostName PostRank 

1 Principal 1 

2 Vice Principal 2 

3 Teacher 3 

String Expression 

String Expression is a valid Character Value Expression that further defines characters factor 
and/or character value expression concatenation operator character factor. Character Primary 
further could be any Expression Primary or a string value function. Concatenation operator is 
represented by ‘||’  symbol and is used to join two character value Expression. 

Syntax 

<string value expression> ::= 

<character value expression> 

<character value expression> ::= <concatenation>  

| <character factor> 

<concatenation> ::= <character value expression> <concatenation operator> <character factor> 

<character factor> ::= <character primary>  

<character primary> ::= <Expression Primary> | <StringFunctions> 

Character Value Expression 

Character Value Expression can simply be a Character Factor or it could be a Concatenation.  

Character Factor 

Character Factor in turn leads to a character Primary. 

Concatenation 

Concatenation is a join of character value expression and character factor through a concatenation operator. 

Character Primary 

Character Primary can be any valid Expression Primary or a string value function. 



 
 
  

Daffodil DB          90 
 

 

Example 1 

Select ’Mr. ’ || postName as name from Post  

is an Example of String Expression. 

Result 

name 

Mr. Principal 

Mr. Vice Principal 

Mr. Teacher 

Example 2 

Select DAYNAME (Date ’2002-12-24’) as "Day Name" from Post 

Result 

DAYNAME 

Tuesday 

 The above result shows one of the 3 rows. 



 
 
  

Daffodil DB          91 
 

Expression Primary 

An Expression Primary can be a SubQuery, Constant, Column Reference, Multi-Valued 
Expression or a Parenthesized Expression. 

Syntax 

<Expression primary> ::= 

<Subquery> 

<Column Reference> 

<Constant> 

<Multi-Valued Expression> 

<Parenthesized Expression> 

SubQuery  
A SubQuery is nothing but a Query itself. It can be one of the three types: 

• Table SubQuery 

• Row SubQuery 

• Scalar SubQuery 

Degree 

Degree refers to the number of records that are resulted from a Query. 

Cardinality 

Cardinality refers to the number of columns that are selected in a Query. 

Table SubQuery 

Table SubQuery is the one for which both degree and cardinality can be greater than or equal to 0  

Row SubQuery 

Row SubQuery is the one for which degree is 1 while cardinality can be greater than or equal to 0.  

Scalar SubQuery 

Scalar SubQuery is the one for which both degree and cardinality are 1. 

Example 1  

Select schoolName from School where Exists (Select schoolID, schoolName from Classes where 
schoolID > 0) 

In the above query, the inner query will be an example of Table SubQuery if it returns more than a 
single record for the studentID. 

Result 

schoolName 

Arthur Morgan School 



 
 
  

Daffodil DB          92 
 

Example 2 

Select eMailAddress from School where Exists (Select Distinct schoolID, schoolName from Classes where 
schoolID > 0) 

In the above query, inner query will be an example of Row SubQuery, if it returns a single record. 

Result 

EmailAddress 

info@arthuormorganschool.org 

Example 3 

Select PhoneNumber from School where Exists (Select Distinct schoolID from Classes where schoolID > 0) 

In the above query, inner query will be an example of Scalar SubQuery, if it returns a single record 
for the studentID. 

Result 

PhoneNumber 

1-828-875-4262 

Column Reference 
Column Reference can be a single column or a group of column separated by period. It can be a 
valid identifier or period separated identifier. 

Syntax 

<column reference> ::=  <identifier> [ { <period> <identifier> }... ] 

<identifier> ::= <regular identifier> | <delimited identifier> 

Regular identifier 

It is an identifier conforming to the rules of the Identifier specified in SQL-99. 

Delimited identifier  

Delimited identifier is an identifier enclosed within double quotes. Any word, including keywords, 
can be a delimited identifier. 

Example 1 

Select postID from post 

In the above example postID is an example of ColumnReference 

Result 

PostID 

1 

2 

3 



 
 
  

Daffodil DB          93 
 

Example 2 

Select a.postID from post a 

In the above example a.postId is also an example of Column Reference. 

“dshjh^&*%”or “SELECT”  is an example of valid delimited identifier. 

Result 

PostID 

1 

2 

3 

 
Constant 
A constant is any valid SQL literal, whose value in the current database instance does not change 
with time. 

Syntax 

<constant> ::= 

<literal> 

<exact numeric literal> 

<Boolean literal>   

<Boolean literal> ::=TRUE 

FALSE 

<exact numeric literal> ::= <digit>…  

<period> <digit> …  

<digit>… <period> <digit>...  

<digit>… E <digit>…   

Literal 

A literal could be any valid character string literal enclosed in ‘’ , or any date literal like DATE 
‘2002-12-24’ , or it could also be any valid TimeStamp literal like TIMESTAMP ‘2002-12-24 
09:34:23’ .  

Boolean Literal 

Boolean Literal is a single constant value specifying TRUE or FALSE.  

Exact Numeric Literal 

An Exact Numeric Literal could be a digit like 0, 22, 333 or any period digit like .2, .33 or <digit 
period digit> like 22.22. 



 
 
  

Daffodil DB          94 
 

Multi-Valued Expression  
The term Multi-Valued Expression refers to the expression that has more than one valid 
expression separated by comma. 

Syntax 

<multi-valued expression> ::= 

<left paren> <Expression> [ {<comma> <Expression>}…  ]  

A Multi-Valued Expression is group of Expressions separated by comma and enclosed in 
parenthesis. The Multi-valued expression becomes more significant if we have to compare 
different expressions. Suppose we have to compare studentName with ‘Catherine’ and studentID 
with 3 in that case we can use either  

studentName = ‘Catherine’  and studentID = 3  

And using Multi-Valued expression we can also write the above condition as follows 

(studentName, studentID) = (‘Catherine, 3’ )  

Examples 

Select * from student where (studentID, StudentName) = (2,'John') 

Here in the above query   

(studentID, StudentName) = (2,'John') 

is an example of Multi-Valued expression. 

Result 
StudentID StudentName RollNumber Gender StudentAddress PhoneNumber ClassID 

2 John 1001 M Oroville City Palace 
1735 Montgomery Street 
Oro…  

(408)615-7297 1 

 
Parenthesized Expression  
A Parenthesized Expression is simply an expression enclosed with left and right parenthesis. 

Syntax 

<Parenthesized Expression> ::= <left paren> <Expression> <right paren>    

Example 

(a * b + c / d)  is a valid parenthesized expression. 



 
 
  

Daffodil DB          95 
 

Predicate 
 

A predicate is an SQL expression that is used in the evaluation of a search condition that is either 
TRUE or FALSE. TRUE indicates that the expression is correct. FALSE indicates that the 
expression is incorrect. All SQL values used in a predicate must be of a compatible data type 
(family) for comparison. 

Syntax: 

<predicate> ::= 

<comparison predicate> 

| <between predicate> 

| <in predicate> 

| <like predicate> 

| <null predicate> 

| <quantified comparison predicate> 

| <exists predicate> 

Predicates is the term that collectively refers to the one amongst COMPARISON predicate, 
BETWEEN predicate, IN predicate, LIKE predicate, NULL predicate, QUANTIFIED 
COMPARISON predicate, EXISTS predicate. 

Multi-Valued Expression is a unique feature provided by Daffodil DB. In Multi-Valued 
Expression, we can combine multiple expressions separated by a comma. Use of a Multi-Valued 
Expression in case of predicates allows us to combine two different conditions joined with ‘AND’ , 
that is to be applied on same operator. The term “ Multi-Valued”  in Multi-Valued predicates refers 
that an expression involved in the predicate may be replaced with more than one expression, 
provided the Cardinality does not mismatch. For example if we have two conditions like 

‘StudentID  = 3 AND SchoolID  = 2’  

then using Multi-Valued Expression, we can combine the two separate conditions as follows: 

(StudentID, SchoolID) = (3, 2) 

Examples 

Let us take the following examples into consideration that are using those predicates whose results 
(TRUE, FALSE) are based on the values of the column. 

Condition SchoolID = 1 and StudentID <=2 evaluates to TRUE if SchoolID is 1 and StudentID is 
less than or equal to 2. 

Select School.PhoneNumber, School.EmailAddress, Student.studentID from school, student where 
SchoolID = 1 and StudentID <= 2.   

The evaluation of the above query will return TRUE for all the records for which SchoolID is 1 
and Students belonging to that school have StudentID less than or equal to 2.  

 



 
 
  

Daffodil DB          96 
 

Result 

PhoneNumber EmailAddress StudentID 

1-828-675-4262 info@arthurmorganschool.org 1 
1-828-675-4262 info@arthurmorganschool.org 2 

  

Comparison Predicate 

The COMPARISON predicate compares two values and returns TRUE or FALSE depending on 
whether the two values have been compared successfully or not. 

Syntax: 

<comparison predicate> ::= 

<Expression1> <comp op> <Expression2> 

<Expression1> ::= <Expression> 

<Expression2> ::= <Expression> 

<comp op> ::= 

<equals operator> 

| <not equals operator> 

| <less than operator> 

| <greater than operator> 

| <less than or equals operator> 

| <greater than or equals operator> 

Expression 

An expression can be one of the following: 

LITERAL - quoted string, numeric value, datetime value. 

FUNCTION CALL - reference to a built-in SQL function. 

SYSTEM VALUE - Current date, Current user.  

NUMERIC, BOOLEAN or STRING Expression - Combining Sub Expressions using Operators. 

Expression1 and Expression2 further define an Expression. Talking Multi-Valued COMPARISON 
PREDICATE means an expression of the following type. 

(ExpressionA1. . . ExpressionAN) <comp op> (ExpressionB1. . . ExpressionBN) 

Here ExpressionA1 will be compared with ExpressionB1, ExpressionA2 will be compared with 
ExpressionB2,. . . and so on ExpressionAN will be compared with ExpressionBN. 



 
 
  

Daffodil DB          97 
 

Comparison Operators 

The operators referred in the syntax are describes as follows: 

Comparison 
Symbol 

 

Symbol Description Result Description 

= Equal to Returns TRUE, if both the values are same. 

 

<> Not Equal to Returns TRUE, if first value is not equal to the 
second value 

 

< Less Than Returns TRUE, if first value is less than the second 
value. 

 

> Greater Than Returns TRUE, if first value is greater than the 
second value. 

 

<= Less Than or Equal to Returns TRUE, if first value is less than or equal to 
the second value 

 

>= Greater than or Equal to Returns TRUE, if first value is greater than or equal 
to the second value. 

 

Example 

Let us take the following examples that are using comparison predicates where results (TRUE, 
FALSE) are based on the values of the column, 

SchoolID = 1 and StudentID <= 2  evaluates to TRUE if SchoolID is 1 and StudentID is less than 
or equal to 2. 

Select School.PhoneNumber, Student.StudentID, Student.StudentName, ClassID from School, 
Student where SchoolID = 1 and StudentID <= 2   

will return TRUE for all the records for which SchoolID is 1 and StudentID of the Students 
belonging to that school have value less than or equal to 2.  



 
 
  

Daffodil DB          98 
 

Result 

PhoneNumber StudentID StudentName ClassID 

1-828-675-
4262 

1 Catherine 1 

1-828-675-
4262 

2 John 1 

Select School.EmailAddress, Student.StudentID, Student.StudentName from School, Student where 
(SchoolID, StudentID) = (1, 5)  

will return TRUE for all the records for which SchoolID is 1 and StudentID is equal to 5.  

Result 

EMailAddress StudentID StudentName 

info@arthurmorganschool.org 5 Wool 

Between Predicate 

BETWEEN Predicate is used to find all the values that lie between two values. The 
BETWEEN predicate determines if a value is between a range of values.  

For example, Expression1 BETWEEN Expression2 AND Expression3 is equivalent to the 
following search condition. 

Expression1 >= Expression 2 AND Expression 1 <= Expression3 

Syntax 

<between predicate> ::= <Expression1> [ NOT ] BETWEEN  [ ASYMMETRIC | SYMMETRIC ] 
<Expression2> AND <Expression3> 

<Expression1> ::= <Expression> 

<Expression2> ::= <Expression> 

<Expression3> ::= <Expression> 

Expression 

As explained above, the expression can be any one of the following: 

LITERAL - quoted string, numeric value, date-time value 

FUNCTION CALL - Reference to built-in SQL function 

SYSTEM VALUE - Current date, Current User  

NUMERIC, BOOLEAN or STRING Expression - Combining Sub Expressions using Operators. 

 

 



 
 
  

Daffodil DB          99 
 

Between 

BETWEEN operates on three expressions. The expression1’ s value is checked for comparison in 
the range of expression2 and expression3. 

Symmetric 

When SYMMETRIC is specified, then the boundary values of the range of expression2 and 
expression3 are not taken into account when the expression1’ s value is checked for any match in 
the specified range. 

Asymmetric 

When ASYMMETRIC is specified, then the boundary values of the range of expression2 and 
expression3 are also taken into account when the expression1’ s value is checked for any match in 
the specified range. 

For both BETWEEN and NOT BETWEEN, ASYMMETRIC is default. 

Not Between 

Not Between operates again on the three expressions. But, now the expression1’ s value is 
checked for comparison outside the range of the expression2 and expression3. 

Examples 

Lets take the following examples that are using BETWEEN predicates where results depends upon 
the given range. 

Select * from Marksrecord  where ExamID BETWEEN 0 AND 15 and StudentID NOT 
BETWEEN SYMMETRIC 1 AND 11 

The above query will select all the records for which ExamID falls between 0 and 15 and for 
which StudentID does not lie between 1 and 11. 

Marks StudentID SubjectID ExamID 

98 1 1 1 

87 1 2 1 

99 1 3 1 

78 1 4 1 

52 1 5 1 

77 1 6 1 

 

Select * from MarksRecord where ExamID BETWEEN ASYMMETRIC 1 AND 15 and 
StudentID NOT BETWEEN SYMMETRIC 1 AND 11 

The above query will select all the records for which ExamID falls between 1 and 15, with 1 and 
15 included and for which StudentID does not lies between 1 and 11, with 1 and 11 excluded. 



 
 
  

Daffodil DB          100 
 

 

Marks StudentID SubjectID ExamID 

98 1 1 1 

87 1 2 1 

99 1 3 1 

78 1 4 1 

52 1 5 1 

77 1 6 1 

 

Like Predicate 

In order to search or match any string pattern, LIKE predicate is used. The LIKE predicate finds 
a string to determine if the string has that particular pattern. The pattern is a string with a 
combination of the following special characters: underscore character ‘_’  and percent sign, ‘%’ .  

Syntax 

<like predicate> ::= 

<character match value> [ NOT ] LIKE <character pattern> 

<character match value> ::= <string expression> 

<character pattern> ::= <string expression> 

Character Match Value 

Character Match Value is a string that will be searched to determine if the specified Character 
Pattern can be found. 

Character Pattern 

Character pattern is the defined pattern, which actually serves as the criteria against which the 
search is made.  

Like | Not Like 

LIKE and NOT LIKE are the key words to execute search. Operate on Character Match Value 
and Character Pattern. LIKE searches for the records matching the specified pattern where as 
NOT LIKE searches for the all the records not matching the specified pattern. LIKE predicate 
is case sensitive. 



 
 
  

Daffodil DB          101 
 

Example 1 

Select studentID from Student where studentName LIKE  ’_o_n’ 

On executing the above query, all studentIDs will be selected from Students where second 
character in the name is ‘o’  and the fourth character is ‘n’  and total length of the string will be 4. 
(like ‘John’  ) 

Result 

StudentID 

2 

4 

 

Example 2 

Select studentName from student where studentName like '%a%e' 

On executing the above query, all studentNames will be selected from Students that contain ‘a’  
and ends with ‘e’  like  ‘Catherine’ , ‘Cathe’ , and ‘Valine’ . 

Result 

StudentName 

Catherine 

Cathe 
Valine 

Exists Predicate 

This quantified operator verifies the existence of rows. The Boolean result of an EXISTS the 
number of rows returned by the SubQuery determines predicate.  
For EXISTS, the Boolean result is TRUE if SubQuery returns at least one row and FALSE if 
SubQuery does not return any row. 

Syntax 

<exists predicate> ::= EXISTS <table subquery> 

<table subquery> ::= <subquery>  

<subquery> ::= <left paren> <query expression> <right paren> 

Here EXISTS is a keyword that checks the existence of records in the query referred to by  <table 
subquery>. 

Table SubQuery 

Table SubQuery is a SubQuery listed in the Parent Query and succeeds the keyword EXISTS. 
EXISTS 
As explained above, EXISTS returns TRUE if the SubQuery returns at least one row, otherwise 
FALSE is returned. 



 
 
  

Daffodil DB          102 
 

Examples 

Select * from Marksrecord where EXISTS (select examID from Exam where examID = 3) 

In the above query, if the result of the inner SubQuery comes out with the number of records more 
than 0 then all EXISTS Predicate will return true and all records of the Marksrecord table will be 
displayed. 

Result 

Marks StudentID SubjectID ExamID 

98 1 1 1 

87 1 2 1 

99 1 3 1 

78 1 4 1 

52 1 5 1 

… . … .. …  …  

In Predicate 

You can use IN predicate to return a value list or a SubQuery. The IN predicate determines if a 
value is TRUE for a list of values. The NOT IN predicate also follows the same format as the IN 
predicate. 

Syntax 

<in predicate> ::= <Expression1> [ NOT ] IN <in predicate value> 

<Expression1> ::= <Expression><in predicate value> ::= 

<table subquery> 

| <left paren> <in value list> <right paren><table subquery> ::= <subquery>  

<in value list> ::= <expression>[{ <comma> <expression> }...] 

Expression 

As explained before, the expression can be any one of the following: 

LITERAL - quoted string, numeric value, date-time value. 

FUNCTION CALL - reference to built-in SQL function. 

SYSTEM VALUE - Current date, Current user  

NUMERIC, BOOLEAN or STRING Expression - Combining Sub Expressions using Operators. 

Table SubQuery 

Table SubQuery is the SubQuery listed in the Parent Query and succeeds the IN predicate. 



 
 
  

Daffodil DB          103 
 

IN 
IN predicate specifies some particular values instead of a broad range (as with EXISTS 
predicate), where value of expression1 has to be matched. 

NOT IN 

On using NOT IN, the expression1 value is searched for a value not in the particularly mentioned 
values by the predicate.  

Example 1 

Select * from Teacher where postID IN (2,4,5,6,8,9)  

Or 

Select * from Teacher where postID IN (select postID from Post where postRank = ’2’)  

In the above query, the IN predicate returns TRUE for the record for which postID satisfies with 
any of the following values 2,4,5,6,8,9. Now since only 2 matches with the postID, record 
corresponding to postID = ‘2’  will get selected from the Teacher. 

 

Results 

EmployeeID TeacherName DateofJoining DateOfBirth Salary DepartName PostID SchoolId 

2 Mr. Brumfield 1997-07-01 1966-11-27 8500 Science 2 1 

 

 

Example 2 

Select TeacherName, EmployeeID, DateOfJoining from Teacher where (Salary, TeacherName) IN  
(select Salary, TeacherName from Teacher  where Salary > 7000 AND Salary < 10000) 

The above query finds a list of names, id and date of joining of teachers in the Teacher table and 
then selects all teacher names whose Salary is between 7000 and 10000 from the table. 

Result 

TeacherName EmployeeID DateofJoining 

Mr. 
Brumfield 

2 1966-07-27 

Null Predicate 

The NULL predicate determines if a column in a selected row contains the SQL value: 

NULL. 

If column value is NULL, then Daffodil DB returns TRUE. Following is the syntax for NULL 
predicate. 



 
 
  

Daffodil DB          104 
 

Syntax 

<null predicate> ::= 

<Expression> IS [ NOT ] NULL 

NULL 

Null predicate Expression IS NULL will return TRUE only if value of the expression returns 
NULL. 
NOT NULL 

Null predicate Expression IS NOT NULL will return TRUE only if value of the expression 
returns NOT NULL. 

Example 

Select * from ClassProperties where LecturerDescription IS NOT NULL. 

Here, the following records will be displayed where the LecturerDescription does not contain 
NULL. 

Result 

ClassProperties LecturerDescription SubjectID ClassID TeacherID 

1 Prose 2 3 1 

2 Prose 2 2 6 

3 Prose 2 2 6 

4 Botany 1 1 8 

5 Zoology 1 2 8 

Quantified Comparison Predicate 

In QUANTIFIED COMPARISON predicate, the result depends upon another keyword that 
defines number of records returned by the right hand side of the operator and the value on the left 
hand side of it. 

Syntax 

<quantified comparison predicate> ::= 

<Expression> <comp op> <quantifier> <table subquery> 

<quantifier> ::= ALL | SOME | ANY 

Table SubQuery 

Table SubQuery is a SubQuery listed in the Parent Query and succeeds the <quantifier> (ALL, 
SOME, ANY). 

 



 
 
  

Daffodil DB          105 
 

Quantifiers 
ALL 

In case of ALL quantifier, the Quantified comparison predicate will return TRUE if and only if all 
the values of the table SubQuery satisfies the Expression. 

SOME 

In case of SOME quantifier, the Quantified comparison predicate will return TRUE if some of the 
values of the table SubQuery satisfies the Expression. 

ANY 

In case of ANY quantifier, the Quantified comparison predicate will return TRUE if and only if 
any of the value of the table SubQuery satisfies the Expression. 

Example 1 

Select * from ClassProperties where subjectID  > ALL (select __rowId from Subject where 
subjectName <> ’Computers’ ) 

All the records from ClassProperties will be selected for which subjectID is greater than every 
__rowId selected by a SubQuery. 

Result 

ClassProperties LecturerDescription SubjectID ClassID TeacherID 

20 Fundamentals 6 3 5 

21 Memory 6 2 5 

22 Basic 6 1 5 

 



 
 
  

Daffodil DB          106 
 

Example 2 

Select * from ClassProperties where subjectID > SOME (select __rowId from Subject where 
subjectName <> ’Computers’) 

All the records from ClassProperties will be selected for which SubjectId is Greater than some of 
the subjectID selected by the SubQuery. 

Result 

ClassProperties LecturerDescription SubjectID ClassID TeacherID 

1 Prose 2 3 1 

2 Prose 2 2 6 

3 Prose 2 2 6 

4 Botany 1 1 8 

5 Zoology 1 2 8 

… . … .. … …  … .. … .. 

The above table shows the first five results that satisfy the query. 

Example 3 

Select * from ClassProperties where ` owed` ted < ANY (select __rowId from Subject where 
subjectName <> ‘Computers’ ) 

All the records from ClassProperties will be selected for which SubjectId is greater than any 
` owed selected by a SubQuery. 

Result 

ClassProperties LecturerDescription SubjectID ClassID TeacherID 

1 Prose 2 3 1 
2 Prose 2 2 6 
3 Prose 2 2 6 
4 Botany 1 1 8 
5 Zoology 1 2 8 
… …      

Above result shows first five records, which satisfy the given query. 



 
 
  

Daffodil DB          107 
 

Contains Predicat* 

CONTAINS predicate is used to search columns containing character-based data types. This 
clause can search single word and phrases, words in close proximity to each other, and by-
inflexion form of verbs and nouns. 

Syntax 

<contains clause> ::= 

CONTAINS <left paren> 

<columnorindexname> <comma> <search expression> 

<right paren> 

<search expression> ::= 

<search term> 

| <search expression> <vertical bar> <search term> 

<search term> ::= 

<search factor> 

| <search term> <ampersand> <search factor> 

<search factor> ::= 

[NOT] <search primary> 

<search primary> ::= 

<text literal> 

| <paren search expression> 

<paren search expression> ::= 

<left paren> <search expression> <right paren> 

<text literal> ::= 

<word> 

| <phrase> 

 
columnorindexname - is the name of a specific column or name of a full-text index. Name of the 
index is used when index is created on more than one column. 
search expression – is the search criterion containing words, phrases and logical NOT, AND, OR 
operators. 
word - is a string of characters without spaces. 
phrase - is one or more words with spaces between each word.  

Full-text index can be created by the following syntax: 

CREATE FULLTEXT INDEX <full-text index name> ON <table name><on column> 

<on column> ::= <left paren> <column name list> <right paren> 

rajat.chugh
* Features that are not supported in One$DB



 
 
  

Daffodil DB          108 
 

full-text index name – user defined full text index name. 
table name – name of the table, which is required to be full text enabled. 
column name list – name of the column(s) on which full text index is to be created. 

Example 

The following statement creates a full text index on StudentAddress column of Student table. The 
data type of address column is VARCHAR; hence, the full-text index can be created on 
StudentAddress column. 

Create fulltext index school_fulltext on student (StudentAddress) 

The full-text search can be applied on the full-text enabled column i.e. StudentAddress, in the 
following ways: 
 
Example 1. The following query retrieves names of the students living in New York, from the 
Student table. 
 

SELECT StudentName FROM student where contains (StudentAddress,"NY") 

Result  

 
 
 
 

Example 2. The following query retrieves names of the students from the Student table having 
Palace or Park in their address field. 

SELECT StudentName FROM student where contains (StudentAddress,"Palace" | "Park") 

Result 

StudentID StudentName 
2 John 
3 Cathe 
8 Williams 

 
Example 3. The following query retrieves names of the students from the Student table living near 
Airport in Columbia. 

SELECT StudentName FROM student where contains (StudentAddress,"AirPort" | "Columbia") 

Result 

 
 
 

StudentName 
Cathe 
Tovera 

StudentName 
Liebig 

rajat.chugh
* Features that are not supported in One$DB



 
 
  

Daffodil DB          109 
 

Example 4. The following query retrieves names of the students from the Student table not living 
in New York and NewZelands. 

SELECT studentID, StudentName FROM student where contains (StudentAddress, Not ("NJ" | 
"NY"))  

Result 

StudentID StudentName 
1 Catherine 
2 John 
4 John 
5 Woll 
7 Liebig 
8 Williams 
10 WinkField 

rajat.chugh
* Features that are not supported in One$DB



 
 
  

Daffodil DB          110 
 

Data Definition Language 

CREATE Database 
 
Use CREATE DATABASE to create a database. 
 
Syntax 
 
CREATE DATABASE <database name> [ FILESIZE <equals operator> <large object length> ]  
[ FILEGROWTH <equals operator> <unsigned integer> ]  
[ UNICODE SUPPORT <truth value> ]  
[ USER <user name> PASSWORD <password name> ] 
<large object length> ::=      <unsigned integer> | <unsigned integer> <multiplier> 
| <large object length token> 
 <truth value>::= True | False 
 
database name 
 
It is the name of the database being created.  
 
FILESIZE <equals operator> <large object length> 
 
This specifies the size of database, in case a new database is created. Default value for this 
parameter is 5m. 
 
FILEGROWTH <equals operator> <unsigned integer>  
 
This is an integer, which specifies the factor by which database size has to be increased after the 
space allocated to the database has been taken up or create subsequent file. This is expressed in 
terms of percentage of the current size of the database. Default value for this parameter is 20%. 
Valid values for this parameter are 10 to 100. 
 
UNICODE SUPPORT <truth value> 
 
It is used for Multilanguage support. 
 
USER <user name>  
 
The value for this parameter specifies the name of the user creating the database. Default value for 
this parameter is the current user.  
 
PASSWORD <password name>  
 
The value for this parameter specifies password of the user creating database. Default value for 
this parameter is password of the current user. 
 



 
 
  

Daffodil DB          111 
 

Examples 
 
CREATE DATABASE ANSII FILESIZE = 6m FILEGROWTH =12 UNICODE SUPPORT true  
USER ANSII PASSWORD ANSII 
 
 
This will create a database called ANSII for USER ANSII with the FILESIZE = 6m, 
FILEGROWTH = 12 and UNICODESUPPORT = TRUE. 
 
 
Note:- 

• IF USERNAME is not specified, then database is automatically created for the current 
user. 

• IF FILESIZE is not specified, then Default value of FILESIZE is taken as 5m for the 
database. 

• IF FILEGROWTH is not specified, then Default value of FILEGROWTH is taken as 20% 
for the database. 

 
 
DROP Database  
 
To drop a database, use the SQL command DROP DATABASE. 
 
Syntax 
 
DROP DATABASE <database name> USER <user name> PASSWORD <password name> 
 
Database name 
 
It is the name of the database, which needs to be dropped. For <database name>, any existing 
database name can be used. 
 
USER <user name > 
 
The value for this parameter specifies the name of the user connecting to the database. There is no 
default value for this parameter.  
 
PASSWORD <password name>  
 
The value for this parameter specifies user password for connecting to the database. There is no 
default value for this parameter. 
 
Examples 
 
DROP DATABASE ANSII USER ANSII PASSWORD ANSII 
 
This will drop the database called ANSII for USER ANSII. 
 
Note: - No default value for USERNAME. If USERNAME is not specified, then an SQL Exception 
will occur. 



 
 
  

Daffodil DB          112 
 

Create Table Statement 

A CREATE TABLE statement creates a table. 

A table is a collection of rows having one or more columns. A row is a nonempty sequence of 
values that corresponds to the column objects in a table. Every row of a table has same number of 
columns and contains value for each column of the table. Row is the smallest unit of data that can 
be inserted into a table and deleted from a table. 

The degree of a table is the number of rows of that table. 

Cardinality is defined as the number of columns in a table. 

A table whose degree is 0 (zero) is said to be empty. 

A table is either a base table or a derived table. 

Base Table  

Base table is the table wherein data is actually stored in the database. All base tables are updatable. 

Derived Table  

A table obtained from other tables directly or indirectly through the evaluation of a query 
expression.  

Derived tables are either updatable or not updatable. The operations of update and delete are 
permitted for updatable tables, subject to Access Rule constraints. 

Syntax 

CREATE TABLE <table name> < table element list > [ COUNTRY <country code>  
LANGUAGE <language code> ] 

<table element list> ::= <left paren> <table element> [ { , <table element> }... ] <right paren> 

<table element> ::=<column definition><table constraint definition> 

<column definition> ::=<column name>{ <data type> | <domain name> }[ <default clause> ] [ 
AUTOINCREMENT ] [ <column constraint definition>... ] 

<column constraint definition> ::=[ <constraint name definition> ]<column constraint> [ 
<constraint characteristics> ] 

<constraint name definition> ::=  CONSTRAINT <constraint name> 

<constraint characteristics> ::= <constraint check time> [ [ NOT ] DEFERRABLE ] 

|[ NOT ] DEFERRABLE [ <constraint check time> ] 

<constraint check time> ::= INITIALLY DEFERRED | INITIALLY IMMEDIATE 

<column constraint> ::= NOT NULL | <unique specification>| <references specification>| <check 
constraint definition> 

<default clause> ::=DEFAULT <default option> 

<table constraint definition> ::= [ <constraint name definition> ] <table constraint> [ <constraint 
characteristics> ] 

<table constraint> ::=<unique constraint definition><referential constraint definition><check 
constraint definition> 



 
 
  

Daffodil DB          113 
 

<unique constraint definition> ::=<unique specification> <left paren> <unique column list> <right 
paren>| UNIQUE ( VALUE ) 

<unique specification> ::= UNIQUE | PRIMARY KEY 

<unique column list> ::= <column name list> 

<referential constraint definition> ::=FOREIGN KEY <left paren><column name list><right 
paren><references specification> 

<references specification> ::=REFERENCES <referenced table and columns>[ MATCH <match 
type> ][ <referential triggered action> ] 

<match type> ::= FULL | PARTIAL | SIMPLE 

<referenced table and columns> ::=<table name> [<left paren><column name list><left paren> ] 

<reference column list> ::= <column name list> 

<referential triggered action> ::=<update rule> [ <delete rule> ]| <delete rule> [ <update rule> ] 

<update rule>  ::= ON UPDATE <referential action> 

<delete rule> ::= ON DELETE <referential action> 

<referential action> ::= CASCADE | SET NULL | SET DEFAULT | RESTRICT | NO ACTION 

<check constraint definition> ::=CHECK <left paren> <search condition>  <right paren>  

 TableName 

TableName is the name of the table structure. 

Country and Language  

It is optional. User may specify the country code and language in which he/she wants to store the 
data. All string type data will be stored in the user specified language using Unicode. 

Table Element List 

It refers to a list of different table elements. 

Table Element 

Each table element consists of Column Definition and Table Constraint Definition 

Column Definition 

The column definition contains all the information needed to define the columns that are part of a 
table.  
 
This includes: 

Column Name 

Column name is the name of the column structure within a table created with CREATE TABLE 
statement. Column names must conform to the rules for identifiers and it must be unique in a 
table.  

Data type 

The data type describes the type of data that can be stored in the column. 

 



 
 
  

Daffodil DB          114 
 

Domain name 

The domain name refers to the domain corresponding to a given column. 

Default clause 

The default clause allows one to specify default values for a given column. Possible default values 
can be any literal/null value/datetime value function/ USER 
/CURRENT_USER/CURRENT_ROLE/SESSION_USER/CURRENT_PATH or any implicitly 
typed value specification. 

Auto increment  

Auto increment Declare the column as auto incremented. By default, column value starts from 1 
with an Increment factor = 1. 

User can declare only the following data type field as an auto incremented: 

BIGINT, BYTE, INT, INTEGER, LONG, SMALLINT, TINYINT, DOUBLE PRECISION, FLOAT, 
REAL, DEC, DECIMAL, NUMERIC. 

Column constraint definition 

Different constituents of column constraint definition are as follows: 

Constraint Name 

Constraint name refers to the identifier for a given constraint. 

The column constraint 

The column constraint consists is one or more keywords, which restrict the data that can be written 
to a particular column. The column constraints supported by Daffodil DB are as follows:  

• NOT NULL 

• PRIMARYKEY 

• UNIQUE 

• FOREIGN KEY 

• CHECK 

All column constraints are optional. 

Not Null 

It indicates that a particular column must have a non-NULL value associated with it.  

Primary key 

It creates an index for the column. The PRIMARY KEY column constraint can specify a single 
column only. In order to specify a PRIMARY KEY constraint with multiple columns, table 
constraint is used. 

Unique 

It defines a unique key on the column. All values for this column must be unique. The UNIQUE 
column constraint can specify a single column only. In order to specify a UNIQUE constraint with 
multiple columns, table constraint is used. 

 



 
 
  

Daffodil DB          115 
 

Foreign key 

It indicates that a relationship exists between column value of this table (known as the child table) 
and primary key of the parent table, which is referenced in the REFERENCES clause.  

Check 

The optional CHECK keyword indicates that the value of a column to be inserted or updated must 
meet the criteria of the check constraint.  

Constraint characteristics 

It defines type of the constraint along with the check time. The constraint can be either initially or 
immediate/initially deferred. 

Immediate constraints 

These constraints are applied when the operation is performed on the table. 

Deferred 

These constraints are applied at the time of commit. 

The Table Constraint definition 

It allows you to define a constraint that is applicable to the table. Usually this type of constraint is 
used when you specify multiple columns for any type of constraint. The different constituents of 
table constraint definition are: 

Constraint name definition 

This name is used to identify a constraint. Each constraint name must be unique for a table.  

Table constraint It can be of any of these types. 

Unique constraint The unique constraint defines an explicitly named primary key or unique 
constraint of one or more columns. 

Referential constraint 

The referential constraint defines an explicitly named foreign key constraint of one or more 
columns. 

A given foreign key and its matching candidate key must contain the same number of columns, N, 
such as: the Ith column of the foreign key corresponds to the Ith column of the matching key (I = 1 
to N), and corresponding columns must have exactly the same data type. The referenced table 
must have a unique or primary index on the specified columns. 

Match Types 
MATCH FULL  

Match Full specifies that for each row R1 of the referencing table, either the value of every 
referencing column in R1 shall be a null value, or the value of every referencing column in R1 
shall not be null and there shall be some row R2 of the referenced table such that the value of each 
referencing column in R1 is equal to the value of the corresponding referenced column in R2. 

 

 

 



 
 
  

Daffodil DB          116 
 

MATCH PARTIAL 

Match Partial specifies that for each row R1 of the referencing table, there shall be some row R2 
of the referenced table such that the value of each referencing column in R1 is either null or is equal 
to the value of the corresponding referenced column in R2. 

The referencing table may be the same table as the one referenced. 

MATCH SIMPLE  
Match Simple is the default type and specifies that for each row R1 of the referencing table, either 
at least one of the values of the referencing columns in R1 shall be a null value, or the value of 
each referencing column in R1 shall be equal to the value of the corresponding referenced column 
in some row of the referenced table. 
If MATCH FULL or MATCH PARTIAL is specified for a referential constraint and if the 
referencing table has only one column specified in <referential constraint definition> for that 
referential constraint, or if the referencing table has more than one specified column for that 
<referential constraint definition>, but none of those columns are Nullable, then the effect is the 
same as if no <match option> were specified. 

Referential Triggered action 

It consists of update/delete rule along with the referential action. The referential action can be any 
of the following: 

 

On delete clause 

The ON DELETE clause defines the rules for deleting specific columns on the specified table. 

On update clause 

The ON UPDATE clause defines the rules for updating specific columns on the specified table.  

If the ON DELETE or ON UPDATE clauses are omitted, the default is NO ACTION. 

Referential action 

With column constraints you must specify at least one identifier. These are: 

CASCADE- has the effect of dropping all SQL objects that are dependent on a particular object.  

SET NULL- assigns null values to all components of the target column.  

SET DEFAULT- assigns default values to all the components of the target column. 

RESTRICT- takes care of what objects are dependent on the object being dropped and if there are 
dependent objects, then the dropping of the object does not take place.  

NO ACTION omits the ON DELETE clause.  

Check constraint 

The check constraint defines an explicitly named check constraint of one or more columns. 

Examples 

Without constraints: 

CREATE TABLE Post (PostID INT, PostName VARCHAR (20), PostRank VARCHAR (20)) 



 
 
  

Daffodil DB          117 
 

With column constraints: 

CREATE TABLE Classes( ClassID int CONSTRAINT Class_PK PRIMARY KEY, ClassName  
varchar(20)  CONSTRAINT CLASS_NAME_NOT_NULL NOT NULL, SchoolID int 
CONSTRAINT Class_School_FK  REFERENCES School(SchoolID))  

With table constraints 

CREATE TABLE ClassProperties( ClassPropertiesID int CONSTRAINT ClassProperties_PK 
PRIMARYKEY, 

LecturerDescription VARCHAR(20), SubjectID int, ClassID int, TeacherID int, CONSTRAINT  
ClassProperties_Subject_FK FOREIGN KEY (SubjectID) REFERENCES Subject(SubjectID), 

CONSTRAINT ClassProperties_Class_FK FOREIGN KEY(ClassID) REFERENCES 
Classes(ClassID), 

CONSTRAINT ClassProperties_Teacher_FK FOREIGN KEY(TeacherID) REFERENCES 
Teacher(EmployeeID))  

With Referential Triggered action and Match Type: 

CREATE TABLE MarksRecord( Marks int, StudentID int, SubjectID int, ExamID int, 

CONSTRAINT MarksRecord_Subject_FK FOREIGN KEY(SubjectID) REFERENCES 
Subject(SubjectID), 

CONSTRAINT MarksRecord_Exam_FK FOREIGN KEY(ExamID) REFERENCES 
Exam(ExamID), 

CONSTRAINT MarksRecord_Student_FK FOREIGN KEY(StudentID) REFERENCES 
student(StudentID) MATCH SIMPLE ON DELETE CASCADE)  

With Country code option 

CREATE TABLE Post (PostID INT, PostName VARCHAR (20), PostRank VARCHAR (20)) 
COUNTRY JP LANGUAGE JA 

This will store above defined table in Japanese language. 

CREATE Sequence 
To create a sequence, use the SQL command CREATE SEQUENCE. 
Syntax 
CREATE SEQUENCE <local or schema qualified name>  
[<initialize sequence> [<initialize sequence>...]] 
 
<initialize sequence>::-   
            <sequence starter> <suinteger>  
            | <sequence type> 
<sequence starter>:- 
            INCREMENT BY  
            | START WITH 
<sequence type>:- 
<maxvalue sequence>  
| <minvalue sequence>  
 
| <cycle in sequence>  



 
 
  

Daffodil DB          118 
 

<maxvalue sequence>:-  
MAXVALUE <suinteger>  
| NOMAXVALUE 
<minvalue sequence>:-  
MINVALUE <suinteger>  
| NOMINVALUE 
<cycle in sequence> ::=  
CYCLE  
| NOCYCLE 
 
<local or schema qualified name>  
It is the name of the sequence so created.  
 
sequence starter  
 

INCREMENT BY 
This clause specifies the interval between sequence numbers. This integer value can be any 
positive or negative integer, but it cannot be 0. The absolute of this value must be less than the 
difference of MAXVALUE and MINVALUE. If this value is negative, then the sequence 
descends. If the increment is positive, then the sequence ascends. If you omit this clause, the 
default value of the interval becomes 1.  
 
START WITH 
 
This clause specifies the first sequence number to be generated. Use this clause to start an 
ascending sequence at a value greater than its minimum or to start a descending sequence at a 
value less than its maximum. For ascending sequences, the default value is the minimum value of 
the sequence. For descending sequences, the default value is the maximum value of the sequence.  
 
Note: - This value is not necessarily the value to which an ascending cycling sequence cycles after 
reaching its maximum or minimum value.   
 
MAXVALUE SEQUENCE 
 
MAXVALUE 
It specifies the maximum value, the sequence can generate. MAXVALUE must be equal to or 
greater than START WITH and must be greater than MINVALUE.  
 
NOMAXVALUE 
It  indicates a maximum value of 9223372036854775807. This is the default value.  
 
MINVALUE SEQUENCE 
 
MINVALUE 
It specifies the minimum value of the sequence. MINVALUE must be less than or equal to 
START WITH and must be less than MAXVALUE.  
 
NOMINVALUE 
It indicates a minimum value of -9223372036857447808. The default value is 1 .  
 
 
 



 
 
  

Daffodil DB          119 
 

CYCLE IN SEQUENCE 
 
CYCLE 
Specifying CYCLE will  indicate that the sequence continues to generate values after reaching 
either its maximum or minimum value. After an ascending sequence reaches its maximum value, it 
generates its minimum value. After a descending sequence reaches its minimum, it generates its 
maximum value.  
 
NOCYCLE 
Specifying NOCYCLE will indicate that the sequence cannot generate more values after reaching 
its maximum or minimum value. This is the default value.  
 

Example 
 
CREATE SEQUENCE orders_seq 
START WITH     1000 
INCREMENT BY   1 
NOCYCLE 
 

This will create the sequence orders_seq in the default schema. This sequence provides numbers 
when orders_seq.NEXTVAL or orders_seq.CURRENTVAL is called from any statement. 
The first reference to orders_seq.nextval returns 1000. The second returns 1001. Each subsequent 
reference will return a value 1 greater than the previous reference.  
 
If you specify none of the following clauses, you create an ascending sequence that starts with 1 
and increases by 1 with default upper limit. Specifying INCREMENT BY -1 only creates a 
descending sequence that starts with Max value.  

• To create a sequence that increment without bound, for ascending sequences, omit the 
MAXVALUE parameter or specify NOMAXVALUE. For descending sequences, omit 
the MINVALUE parameter or specify the NOMINVALUE.  

• To create a sequence that stops at a predefined limit, for an ascending sequence, specify a 
value for the MAXVALUE parameter. For a descending sequence, specify a value for the 
MINVALUE parameter. Also specify the NOCYCLE. Any attempt to generate a sequence 
number once the sequence has reached its limit results in an error.  

• To create a sequence that restarts after reaching a predefined limit, specify values for both 
the MAXVALUE and MINVALUE parameters. Also specify the CYCLE. If you do not 
specify MINVALUE, then it defaults value is 1).  

ALTER Sequence 
To alter a sequence use the SQL command ALTER SEQUENCE. 
 
 Syntax 
ALTER SEQUENCE <local or schema qualified name>  
<sequence incrementer> [<sequence incrementer>...] 
 
<sequence incrementer>::= INCREMENT BY <suinteger> | <sequence type> 
<sequence type>:- 
<maxvalue sequence>  
| <minvalue sequence>  
| <cycle in sequence>  



 
 
  

Daffodil DB          120 
 

| <sequence order> 
 
<maxvalue sequence>:-  
MAXVALUE <suinteger>  
| NOMAXVALUE 
<minvalue sequence>:-  
MINVALUE <suinteger>  
| NOMINVALUE 
<cycle in sequence> ::=  
CYCLE  
| NOCYCLE 
 
 local or schema qualified name 
It is the name of the sequence to be altered.  
 
SEQUENCE INCREMENT 
It specifies the interval between sequence numbers. This integer value can be any positive or 
negative integer, but it cannot be 0. The absolute of this value must be less than the difference of 
MAXVALUE and MINVALUE. If this value is negative, then the sequence descends. If the 
increment is positive, then the sequence ascends.  
 
MAXVALUE SEQUENCE 
MAXVALUE 
It specifies the maximum value, the sequence can generate.. MAXVALUE must be equal to or 
greater than START WITH and must be greater than MINVALUE.  
 
NOMAXVALUE 
Specifying NOMAXVALUE  indicates a maximum value of 9223372036854775807. 
  
MINVALUE SEQUENCE 
 
MINVALUE 
It specifies the minimum value of the sequence. MINVALUE must be less than or equal to 
START WITH and must be less than MAXVALUE.  
 
NOMINVALUE 
Specifyig NOMINVALUE indicates a minimum value of -9223372036857447808.  
 
CYCLE IN SEQUENCE 
 
CYCLE 
Specifying CYCLE indicates that the sequence continues to generate values after reaching either 
its maximum or minimum value. After an ascending sequence reaches its maximum value, it 
generates its minimum value. After a descending sequence reaches its minimum, it generates its 
maximum.  
 
NOCYCLE 
Specifying NOCYCLE indicates that the sequence cannot generate more values after reaching its 
maximum or minimum value. This is the default value.  
 



 
 
  

Daffodil DB          121 
 

Example 
 

ALTER SEQUENCE orders_seq 
INCREMENT BY 2 
CYCLE  
 

 
This will alter the sequence orders_seq in the default schema.  
 
DROP Sequence 
To drop a sequence use the SQL command DROP SEQUENCE. 
 
 Syntax 
DROP SEQUENCE <local or schema qualified name> 
 
<local or schema qualified name> 
It is the name of the sequence to be dropped. For <local or schema qualified name> you may use 
an existing sequence name. 
 

Example 
DROP SEQUENCE orders_seq 
 
This will drop the sequence orders_seq in the default schema.  
 
Create Trigger Statement 
Create Trigger statement is used to create a trigger. 

A trigger can specify additional constraints and business rules within the database to manage a 
number of executions of an application. Triggers help us to enforce data integrity rules with 
actions such as cascading deletes or updates. Triggers can also perform a variety of functions such 
as issuing alerts, updating other tables, sending e-mails, and other useful actions.  

Trigger  
Trigger defines a set of actions that are executed when a database event occurs on a specified 
table. A database event can be delete, insert, or update operation that is performed by the user. 

Syntax: 

<trigger definition> ::= 

CREATE TRIGGER <trigger name> <trigger action time> <trigger event> ON <table name> [ 
REFERENCING <old or new values alias list> ] <triggered action> 

<trigger action time> ::=  

BEFORE| AFTER 

<trigger event> ::= 

INSERT | DELETE | UPDATE [ OF <column name list> ] 

<triggered action> ::= 

[ FOR EACH { <action type rule> } ] [ WHEN <left paren> <Boolean Expression> <right paren> 
] <triggered SQL statement> 



 
 
  

Daffodil DB          122 
 

<action type rule> ::= 

ROW | STATEMENT 

<triggered SQL statement> ::= 

<SQL procedure statement> | BEGIN ATOMIC { <SQL procedure statement>  <semicolon> }... 
END 

 

<old or new values alias list> ::= <old or new values alias>... 

<old or new values alias> ::= OLD [ ROW ] [ AS ] <identifier> 

| NEW [ ROW ] [ AS ] <identifier> 

| OLD TABLE [ AS ] <identifier> 

| NEW TABLE [ AS ] <identifier> 

Trigger name 

It defines a unique trigger in a schema. 

Trigger action time 

It signifies when a trigger can be fired or executed relative to the trigger event. It takes one of the 
following values:  

BEFORE  

Before indicates the state of database instance at a particular time before the statement’ s changes 
are applied and before any constraints had been applied to the target table.  

AFTER 

After indicates the state of database instance at a particular time after all constraints have been 
satisfied and after the changes have been applied to the target table. 

Trigger event 

It specifies what type of SQL statement fires or executes the trigger. It can take one of the 
following SQL statements: DELETE, INSERT, or UPDATE. 

Table name  

It specifies the name of the table to which the trigger belongs. A table is allowed to have multiple 
triggers. 

Referencing clause 

This clause defines correlation or alias names for old and new values of a row or for the old or 
new table. You can use the correlation or alias names in the WHEN (search condition) clause or in 
SQL statements of the trigger body.  

Action Type Rule 

This clause determines the number of times that a trigger will be fired for each triggering event. It 
can take the value of either ROW or STATEMENT. 

Statement specifies the trigger body to execute only once regardless of the number of rows being 
modified (deleted, inserted, or updated) by the triggering event statement. 



 
 
  

Daffodil DB          123 
 

Row specifies the trigger body to execute once for each row that is being modified by the 
triggering event statement. 

When (Boolean Expression) specifies the conditions for executing triggered SQL statement. All 
supported SQL search conditions are allowed in this clause. 

Triggered SQL Statement  

It specifies an SQL statement that the trigger executes. 

Single Statement Execution 

 

You can only use one SQL statement in the triggered SQL statement. If the granularity of the 
trigger is ROW or STATEMENT, the triggered SQL Statement can only take the values of the 
following SQL statements. 

•  Insert 

•  Update 

•  Delete 

Multiple Statement Execution  

However, if you use the BEGIN ATOMIC...END keywords, you can execute any number of 
statements. 

You can define any number of triggers for a single table, including multiple triggers on the same 
table for the same event. You can create a trigger in any schema except 
System.definitions_schema, which is the system table schema. 

 

Order of Execution 

When a database event occurs that fires a trigger, Daffodil DB performs actions in the following 
order: 

•  It performs the insert, update, or delete. 

•  It fires before triggers. 

•  It performs constraint checking (primary key, unique key, foreign key, check). 

•  It gets fired after triggers. 

When multiple triggers are defined for the same database event for the same table and for the same 
trigger time (before or after), then they are fired in the order in which they were created. 

Trigger Recursion 

It is possible for one trigger to cause itself to fire, and thus it is possible for triggers to recur 
infinitely. 

Examples 

Trigger Before Insert at statement level 

Create trigger abc before insert on classes for each statement update classproperties set 
subjectID=1 



 
 
  

Daffodil DB          124 
 

This trigger is fired before the insertion occurs in the classes table and updates the classproperties 
table. 

Trigger After Insert with Aliases 

create trigger abc1 after insert on Teacher REFERENCING NEW DEK  for each row  update Post 
set Postname = ’Teacher’ where postID=DEK.PostId 

This trigger is fired after the insertion occurs in the Teacher table and updates the Post table. The 
new inserted row in the Teacher table is referenced with the alias DEK. 

 

Multiple Statement Execution In Trigger After Insert With Begin Atomic.. End 

create trigger abc2  after insert on classes referencing new as newrow for each row BEGIN 
Atomic update classes set ClassName=’6th’ where schoolID = newrow. SchoolId; delete from 
classes where ClassName=’7th’; end  

The trigger is fired after insert operation occurs on the Classes table. 

The sql statement to be executed when a trigger is fired is enclosed within begin, atomic and end 
keywords. 

Create Procedure Statement 
SQL Stored Procedure is nothing more than a collection of statement that is executed 
automatically one after the other by Daffodil DB database server. The invocation of a stored 
procedure is treated as a regular external call. The application waits for the stored procedure to 
terminate, and parameters can be passed back and forth. Stored procedures can be called locally 
(on the same system where the application runs) and remotely on a different system. However, 
stored procedures are particularly useful in a distributed environment since they may considerably 
improve the performance of distributed applications by reducing the traffic of information across 
the communication network. 

For example, if a client application needs to perform several database operations on a remote 
server, you can choose between issuing many different database requests from the client site and 
calling a stored procedure. In the first case, you start a dialog with the remote system every time 
you issue a request. If you call a stored procedure instead, only the call request and the parameters 
flow on the line. In addition, the server system executes some of the logic of your application with 
potential performance benefits at the client site.  

Syntax 

<SQL-invoked procedure> ::= CREATE PROCEDURE <routine name> <SQL parameter 
declaration list> <routine characteristics> <routine body> 

<SQL parameter declaration list> ::= <left paren> [ <SQL parameter declaration> [ { <comma> 
<SQL parameter declaration> }... ] ] <right paren> 

<SQL parameter declaration> ::= [ <parameter mode> ] [ <SQL parameter name> ] <parameter 
type> 

<parameter mode> ::= IN  

| OUT 

| INOUT 



 
 
  

Daffodil DB          125 
 

<routine characteristics> ::= [ <routine characteristic>... ] 

<routine characteristic> ::= <language clause> 

| SPECIFIC <specific name> 

<language clause>::= SQL 

<routine body>::= <SQL routine body> 

 | <external java reference> 

<SQL routine body>::= <SQL procedure statement> 

 

<SQL procedure statement>::= <SQL Statements> 

<external java reference>::= EXTERNAL NAME <external method name> [<java method 
signature>] 

<external method name>::= [{< jar name> <colon>}] <java method name> 

<Jar name> ::=< catalog id> <period> <schema id> <period> <jar id> 

| <schema id> <period> <jar id> 

| <jar id> 

<Catalog id>::= <identifier> 

<Schema id>::= <identifier> 

<Jar id>::= <identifier> 

<Java method name>::= <java class name> <double colon> <method identifier> 

<Java class name>::= <package identifier> [{<period> <package identifier>}...] 

<Package identifier>::= <java identifier> 

<Class identifier>::= <java identifier> 

<method identifier>::= <java identifier> 

<java identifier>::= <identifier> 

<java method signature>::= <left paren> [ <java parameters> ] <right paren> 

<java parameters> ::= <java datatype> [ { <comma> <java datatype> }... ] 

<java datatype> ::= 

BIGINT | BINARY | BIT | BLOB | BOOLEAN | CHAR | CLOB | DATE | DECIMAL 

| DOUBLE | FLOAT | INTEGER | NULL | NUMERIC | REAL | SMALLINT | TIME 

| TIMESTAMP | TINYINT | VARBINARY | VARCHAR | JAVAPARAMETER 



 
 
  

Daffodil DB          126 
 

IN, OUT, INOUT Parameters 
According to SQL-99 specification, a parameter defined in a procedure statement could either be 
IN, OUT or INOUT. 

By default it is IN.  

IN 

User has to provide the value of the parameter while calling procedures. 

OUT 

User can get its value after calling the procedure. 

INOUT 

User has to provide the value before and can get the value after calling the procedure. 

According to SQL-99 specification in a particular schema, there could be any number of 
procedures with the same name but with different number of parameters. e.g.  

abc.procedure_name (IN xyz integer) 

and 

abc.procedure_name (IN xyz integer, IN rst integer) is valid.  

So, to differentiate between these procedures, SQL-99 has specific names. A specific name cannot 
be repeated in a schema i.e. in a schema you cannot have 2 procedures with the same name.  
Although specific name is optional as per the specification, yet we recommend you to write the 
specific name as you cannot drop a procedure without a specific name.  

Example 1 

The following example inserts a row in the Student table. 
 
CREATE PROCEDURE Student_row_insert (IN varid INT, IN varname varchar 
(20), IN 
varrollno int, IN vargender char (1), IN varaddr varchar (80), IN varphone varchar 
(20), IN 
varclasid int) SPECIFIC STUDENT_ROW_INSERT AS BEGIN INSERT INTO 
student 
VALUES (varid, varname, varrollno, vargender, varaddr, varphone, varclasid); END; 
 
Example 2 
 
This example modifies the salary of a teacher. 
 
CREATE PROCEDURE Modify_Teacher_Salary (IN varteacherid int, IN varsalary 
int) 
SPECIFIC MODIFY_TEACHER_SALARY AS BEGIN UPDATE teacher SET salary 
= 
varsalary WHERE employeeid = varteacherid; END; 
 
Example 3 



 
 
  

Daffodil DB          127 
 

 
This example retrieves the Marks of the student for the StudentId passed. 
 
CREATE PROCEDURE Student_Mark_InOut_Proc (OUT INOUT_PARAM 
INTEGER) 
SPECIFIC Student_Marks_InOut_Proc as BEGIN SELECT Marks into 
INOUT_PARAM from 
MarksRecord WHERE StudentId=INOUT_PARAM; END; 

External Java Method 
External java reference is used to call the method of a java class.  

Though jar name is optional, but the jar, which is specified in the class path, can be provided. 

Package name is optional. But if specified with the java class then it will search the given java 
class in the specified package else java class will be looked for in the current package. 

The Specified Class Name must have a constructor for the parameter of java, sql.Connnection data 
type; otherwise an Exception will be thrown. 

The java data type in the specified function must be a java parameter for each and every Out or 
InOut parameter mentioned in the Procedure Definition. 

The java data type in the specified function must contain same count of parameters as defined in 
the Procedure Definition. 

The specified Class must contain specified functions having parameters of same count and same 
data type as defined in the Procedure Definition. 

Example 
 
This example call a java procedure 
 
CREATE PROCEDURE Procedure_Name (OUT var1 int, IN var2 Boolean, INOUT 
var3 int) specific Specfic_Procedure_Name EXTERNAL 
NAME Jar_Name:java.sql.Connection::SQLConnect(Javaparameter, Boolean, 
javaparameter); 
 
Example-1 
CREATE PROCEDURE Procedure_Name() specific Specfic_Procedure_Name  
EXTERNAL NAME Connection::getConnection () 
 
Example-2 
CREATE PROCEDURE Procedure_Name (IN a int, IN b Boolean) specific 
Specfic_Procedure_Name EXTERNAL NAME  Jar_Name:Connection::displayData 
(Integer, Boolean) 
 
Example-3 
CREATE PROCEDURE Procedure_Name() specific Specfic_Procedure_Name 
EXTERNAL NAME com.java.sql.Connection::setUrl() 
 



 
 
  

Daffodil DB          128 
 

Example-4 
CREATE PROCEDURE Procedure_Name() specific Specfic_Procedure_Name 
EXTERNAL NAME Statement::CreateStatement () 
 
Following are the types of statements that can be used in the body of the procedure: 

1) Assignment statement:  It is used for assigning values. 

Syntax: 

SET <assignment target> <equals operator> <assignment source> 

 <assignment target> ::= <target specification> 
| <modified field reference> 

 | <mutator reference> 
 
<mutator reference> ::=< mutated target specification> <period> <method name> 

 <mutated target specification> ::= <target specification>  
  | <left paren> <target specification> <right paren> 
 | <mutator reference> 

 
<assignment source> ::= <value expression> 
 | <contextually typed source> 
<contextually typed source> ::= <implicitly typed value specification>  

  | <contextually typed row value expression> 
   

 

Example: 

 Set a = 1 

 
2) Compound statement: It is used to write a block of statements collectively at one place. 

Syntax: 

<compound statement> ::= [ <beginning label> <colon> ]  
BEGIN [ [ NOT ] ATOMIC ]  
[ <local declaration list> ] [ <local cursor declaration list> ] [ <SQL statement list> ]  

END [<ending label>] 

 

<beginning label> ::= <statement label> 

<local declaration list> ::= <terminated local declaration>... 

<local cursor declaration list> ::= <terminated local cursor declaration>... 

<terminated local cursor declaration> ::= <declare cursor> <semicolon> 

<SQL statement list> ::= <terminated SQL statement>... 

<ending label> ::= <statement label> 

 

Example: 



 
 
  

Daffodil DB          129 
 

 BEGIN 

        Set a=1; 

        Insert into student values (101,’daisy’); 

  END 

 



 
 
  

Daffodil DB          130 
 

3) Case statement: It is used to perform some action depending on the set of conditions. It is 
also used to replace multiple if statements. 
Syntax : 

<case statement> ::= <simple case statement> | <searched case statement> 

<simple case statement>::=  
CASE <simple case operand 1>  
<simple case statement when clause>...  
[<case statement else clause>]  
END CASE 
<simple case operand 1> ::= <value expression> 
<value expression> ::= <value expression primary>  
| <row value constructor> | <value specification>  
| <boolean value expression> | <datetime value expression>  
| <string value expression> |<numeric value expression> 
<simple case statement when clause> ::=  
WHEN <simple case operand 2>  
THEN <SQL statement list> 

<case statement else clause> ::= ELSE <SQL statement list> 
<searched case statement> ::=  
CASE  
<searched case statement when clause>... [<case statement else clause>]  
END CASE 

Example : 

Case rollno 

 When 101 then insert into student(name)  values(’daisy’); 

 When 102 then insert into student(name)  values(’sanya’); 

  Else  

 

 insert into student (name) values (’john’); 

End case; 

4) If statement: It is used to perform some action depending upon a given set of conditions. 
Syntax : 

<if statement> ::=  
IF <search condition>  
<if statement then clause> [<if statement else if clause>...] [<if statement else clause> ]  
END IF 

<if statement then clause> ::=THEN <SQL statement list> 

<if statement else if clause> ::= ELSEIF <search condition> THEN <SQL statement list> 

<if statement else clause> ::=ELSE <SQL statement list> 

 



 
 
  

Daffodil DB          131 
 

Example 

 

If (rollno=101) then insert into student(name)  values(’john’); 

  Elseif (rollno=102) then into student (name) values (’david’); 

 Else insert into student (name) values (’sanya’); 

End If; 

  

 

5) Iterate statement: This statement is used within a loop. When this statement is encountered, 
control is transferred to the beginning of the loop. 
Syntax : 

<iterate statement> ::= ITERATE <statement label> 

Example: 

create procedure proc4() specific sproc4  

         as begin  

            begin 

            declare aa int;  

            set aa = 2;  

               lab :  

                 repeat  

               if aa in (22,24,26,28,10) then  

                  set aa = aa+3;  

                               iterate lab;  

               else                  insert into school(schoolid,schoolname) values(aa,’a’);  

                           end if;  

                          

      set aa = aa+3;  

                 until aa>=10  

         end repeat;  

         end; 

      end;   

   

6) Leave statement: This statement is used to come out of a loop. When this statement is                 

       executed, control is transferred out of the loop. 

 Syntax: 

 <leave statement> ::= LEAVE <statement label 



 
 
  

Daffodil DB          132 
 

 Example: 

  Set  a=1; 

 WHILELABEL : While(a<10) do 

  Set a=a+1; 

  If (a=5) then 

       leave WHILELABEL; 

  End while; 

     Note: - In the above case, body of while loop will be executed 4 times, after that control will 
exit of while loop (when a =5, condition will be true) 

7) Loop statement: It is used to execute a group of statements repeatedly. 

Syntax : 

<loop statement> ::= [<beginning label> <colon>]  
LOOP  
<SQL statement list>  
END LOOP [<ending label>] 

 

Example : 

 LOOP 

     Set a=1; 

     Set a=a+1; 

 END LOOP 

Above shown is an infinite loop. 

8) While statement :It is used to execute a group of statements repeatedly as long as search condition 
is true. 

Syntax: 

<while statement> ::= [<beginning label> <colon>]  
WHILE <search condition> DO  
<SQL statement list>  
END WHILE [<ending label>]  

Example: 

               WHILE a < 20 do   

if mod(a,2)=0 then  

             insert into Table_Name(one) values(a);  

              else  

 insert into Table_Name (three) values(a);  

          end if ;  

               set a = a + 1 ; 

     End While;  



 
 
  

Daffodil DB          133 
 

 
9) Repeat statement: It is used to execute a group of statements repeatedly until a condition becomes 

true. 

Syntax : 

<repeat statement> ::= [<beginning label> <colon>]  
REPEAT  
<SQL statement list>  
UNTIL <search condition>  
END REPEAT [ <ending label> ] 

 

Example: 

REPEAT 

     Insert into Table_Name values(0,1); 

      Set a=a+1;  

UNTIL (a>10) 

END REPEAT; 

 

Cursor 

Operations in a relational database act on a complete set of rows. The set of rows returned by a 
SELECT statement consists of all the rows that satisfy the conditions in the WHERE clause of the 
statement. This complete set of rows returned by the statement is known as the Result Set. 
Applications, especially interactive online applications, cannot always work effectively with the 
entire Result Set as a unit. These applications need a mechanism to work with one row or a small 
block of rows at a time. Cursors are a logical extension to Result Sets that let applications work with 
the Result Set, row by row. 

Syntax 

<declare cursor> ::=  
DECLARE <cursor name> [ <cursor sensitivity> ]  
[ <cursor scrollability> ] CURSOR  
[ <cursor holdability> ]  
[ <cursor returnability> ]  
FOR <cursor specification> 

<cursor name> ::= <local qualified name> 

<cursor sensitivity> ::=  
SENSITIVE  
| INSENSITIVE  
| ASENSITIVE 



 
 
  

Daffodil DB          134 
 

<cursor scrollability> ::=  
SCROLL  
| NO SCROLL 

<cursor holdability> ::=  
WITH HOLD  
| WITHOUT HOLD 

<cursor returnability> ::=  
WITH RETURN  
| WITHOUT RETURN 

<cursor specification> ::=  
<query expression> [ <updatability clause> ] 

<updatability clause> ::=  
FOR { READ ONLY | UPDATE [ OF <column name list> ] } 

If <cursor sensitivity > is not specified, then ASENSITIVE is implicit, otherwise cursor is 
sensitive if SENSITIVE is specified, insensitive if INSENSITIVE is specified and asensitive if 
ASENSITIVE is specified explicitly. 

 

If <cursor scrollability > is not specified, then NO SCROLL is implicit. 

If <cursor holdability > is not specified, then WITHOUT HOLD is implicit. 

If <cursor returnability > is not specified, then WITHOUT RETURN is implicit. 

If <updatability clause> is not specified, then: 
a) If either INSENSITIVE, SCROLL, or ORDER BY is specified, or if QE is not a simply 
updatable table, then an <updatability clause> of READ ONLY is implicit. 
b) Otherwise, an <updatability clause> of FOR UPDATE without a <column name list> is 
implicit. 
 
If an <updatability clause> of FOR UPDATE with or without a <column name list> is specified, 
then INSENSITIVE shall not be specified and QE shall become updatable. 
 
If an <updatability clause> specifying FOR UPDATE is specified or implicit, then cursor is 
updatable, otherwise cursor is not updatable. 
 
If WITH HOLD is specified, then the cursor specified by the <cursor specification> is said to be 
a holdable cursor. 
 
If WITH RETURN is specified, then the cursor specified by the <cursor specification> is said to 
be a result set cursor. 
 



 
 
  

Daffodil DB          135 
 

DECLARE num_salary, str_emp_code int; 
DECLARE cursoremp cursor for  
              select emp_code, salary from employee where deptno = 1; 
         open cursoremp;  
         IF cursoremp%ISOPEN THEN  
            FETCH cursoremp INTO str_emp_code,num_salary;  
            lab : while cursoremp%FOUND do  

UPDATE employee SET salary = num_salary + (num_salary * 0.05) where 
emp_code = str_emp_code; 

          insert into emp_raise values (str_emp_code,num_salary * 0.05);  
          FETCH cursoremp INTO str_emp_code,num_salary;  
                    end while; 
            close cursoremp; 
         END IF; 
 
Note: - In the example given above, a cursor named cursoremp is used to increment the salary of 
all employees from department with department code 1 and to insert the incremented amount in 
another table named emp_raise. 
 



 
 
  

Daffodil DB          136 
 

Create View Statement 
A Create View Statement creates a view.   

View   

Derived Tables or “ Virtual Tables”  are known as Views. They provide an alternative way to look 
at the data of one or more tables. This virtual table or view derives its values from the evaluation 
of a query expression in the Create View statement. The query expression can reference base 
tables, other views, aliases, etc. Essentially, a view is a stored Select statement, of which results 
can be retrieved at a later time by querying the view as if it was a table. A view can be read-only 
or updatable. 

Syntax 

<View definition>:=  CREATE VIEW <table name> < regular view specification>  AS <query 
expression> 

<regular view specification>:= [<left paren> <view column list> <right paren> ] 

<view column list>:= <column name list> 

Regular View Specification 

It specifies a column List, where the names used would be taken as view column Names. 

This is optional and follows the rules given below: 

If it is not null, then all columns in a column list would be taken as columns of view. If it is null, 
then column names in a view would be taken from query expression. 

Column count in the column list of regular view specification should be equal to the selected 
column list in the select list of the select query of Query Expression. 

Query Expression 

It is a select query, where results create view definition. So, if a column list in the regular view 
specification is null, then selected column list in the select list of a select query would be taken as 
column names in the view. 

Rules for select query are 

In the following cases, alias name is essential in the select list of select query 

e.g.  (a+b), (a*b) etc. 

If a column list in regular view specification is not null, then there is no need for an alias name. 

Example 1 

CREATE VIEW v1 AS SELECT DateOfJoining as Joining Time FROM Teacher 

By this query one can create a view having column name as JoiningTime.  

Example 2 

CREATE VIEW v2 (StudentID, Marks) AS SELECT Student.StudentID, Marks  FROM Student,  
MarksRecord WHERE Student.StudentID = MarksRecord.StudentID 

By this view, one can create a view having column names = StudentID and Marks. This view will 
show the marks of each student along with StudentID. It will take values from tables Student and 
MarksRecord. 



 
 
  

Daffodil DB          137 
 

Create Index Statement 
It creates an index on a given table. Only table or view owner can create indexes on that table. The 
owner of a table can create an index at any time, irrespective of whether there is data in the table 
or not. Indexes are mainly created to make the retrieval faster in the case of ORDER BY and 
condition queries referring index column. 

Syntax 

CREATE INDEX <index name> ON <table name> <left paren> <column name> [ ASC | DESC ] 
[ {, <column name> [ ASC | DESC ] }... ]  <right paren> 

index name 

It is the name of the index. Index names must be unique within a table but do not need to be 
unique within a database. Index names must follow the rules of identifiers. 

table name 

It is name of the table already created that contains column or columns to be indexed. Specifying a 
catalog name and a schema name is optional. 

column 

It is the column or columns on which the index is made. Specify two or more column names to 
create a composite index on the combined values in the specified columns. List the columns to be 
included in the composite index (in sort-priority order) inside the parenthesis after table.  

ASC or DESC 

Determine the ascending or descending sort direction for the particular index column. The default 
is ASC. 

Example 1 

CREATE INDEX TeacherNameIndex1 ON Teacher (TeacherName) 

OR 

CREATE INDEX TeacherNameIndex1 ON Teacher (TeacherName ASC) 

It creates the index with a name TeacherNameIndex1 on Teacher table, which helps in the quick 
retrieval of data on the column TeacherName, maintaining index in the ascending order. 

Example 2 

CREATE INDEX TeacherNameIndex2 ON Teacher (TeacherName DESC) 

It creates the index with a name TeacherNameIndex2 on Teacher table, which helps in the quick 
retrieval of data on the column TeacherName, maintaining index in the descending order. 

Example 3 

CREATE INDEX DepartmentTeacherNameIndex ON Teacher (DepartName ASC, TeacherName 
DESC)  

It creates the index with a name DepartmentTeacherNameIndex on Teacher table, which helps in 
the quick retrieval of data on the columns Department and TeacherName, maintaining index in the 
ascending order of Department and the descending order of TeacherName. 



 
 
  

Daffodil DB          138 
 

Creating too many indexes may increase memory usage and slow down the working of data 
manipulation commands. 

Create FullText Index Statement* 
It creates FullText index on a given table. Only the table or view owner can create FullText 
indexes on that table. Owner of the table can create FullText index at any time irrespective of 
whether there is data in the table or not. FullText Indexes are mainly created to make the retrieval 
faster in the case of ORDER BY and condition queries referring FullText indexed column. 

Syntax 

CREATE FULLTEXT INDEX <Index name> ON <table name> <left paren> <column name> [{, 
<column name>}...] <right paren> 

index name 

It is the name of the FullText Index.   FullText index names must be unique within a table but does 
not need to be unique within a database. FullText index names must follow the rules of identifiers. 

 

table name 

It is the name of the already created table that contains the column or columns to be indexed. 
Specifying the catalog name and schema name is optional. 

column 

It is the column or columns on which the FullText index is made. Specify two or more column 
names to create a composite FullText index on the combined values in the specified columns. List 
the columns to be included in the composite FullText index inside the parenthesis after table.  

Example 1 

CREATE FULLTEXT INDEX TeacherNameIndex1 ON Teacher (TeacherName) 

Create FullText index with the name TeacherNameIndex1 on Teacher table, which helps in quick 
retrieval of data on the column TeacherName. 

Example 2 

CREATE FULLTEXT INDEX DepartmentTeacherNameIndex ON Teacher (DepartName, 
TeacherName)  

Create FullText index on multiple columns with the name DepartmentTeacherNameIndex on 
Teacher table, which helps in quick retrieval of data on the columns DepartmentName and 
TeacherName. 

Creating too many FullText indexes may increase the memory usage and slows down the working 
of data manipulation commands as well. 

rajat.chugh
* Features that are not supported in One$DB



 
 
  

Daffodil DB          139 
 

Create Domain Statement 
Create Domain Statement is a domain definition that specifies a data type. It may also specify a 
<domain constraint> that further restricts the valid values of the domain or a <default clause> that 
specifies the value to be used in the absence of an explicitly specified value or column default. 

Domain 
A domain is a set of permissible values. A domain is defined in a schema and is identified by a 
<domain name>. The purpose of a domain is to constraint the set of valid values that can be stored 
in a column of a base table by various operations. 

Syntax 

<domain definition> ::=  CREATE DOMAIN <domain name> [ AS ] <data type> [ <default 
clause> ]  

[ <domain constraint>... ] 

<domain constraint> ::= [ <constraint name definition> ] <check constraint definition> [ 
<constraint characteristics> ] 

Domain name 

It is the name of the domain to be created. 

Data Type 

The data type description of the data type of the domain. 

Default clause 

Default Clause is used to define a default value for the domain.  

Domain constraints 

Domain constraint is a constraint that is specified for a domain. It is applied to all columns that are 
based on that domain, and to all values directed to that domain.  

Example 

CREATE DOMAIN intdom as Integer check (value > 100)  

This domain will have integer values with a constraint that the values should be greater than 100.  

Create Schema Statement 
CREATE SCHEMA statement creates a schema in the database. Schema names must be unique 
within the database. 

Schema 

Databases contain collections of independent schemas. A schema is a logical grouping of tables, 
indexes, triggers, routines, and other data objects under one qualifying name. 

User that creates a schema owns that schema unless the optional AUTHORIZATION qualifier is 
used to specify another user. The schema owner can grant applicable privileges to appropriate 
users. 



 
 
  

Daffodil DB          140 
 

Syntax 

<schema definition> ::=  CREATE SCHEMA <schema name clause>  [ <schema element>... ] 

<schema name clause> ::= <schema name> AUTHORIZATION <schema authorization 
identifier> 

AUTHORIZATION <schema authorization identifier> 

| <schema name> 

<schema authorization identifier> ::=<authorization identifier> 

<schema element> ::= 

<table definition> 

| <view definition> 

| <domain definition> 

| <trigger definition> 

| <schema routine> 

| <grant statement> 

| <role definition> 

| <grant role statement> 

Table definition 

This is used to create a table. 

View definition 

This is used to create a view. 

Domain definition 

This is used to define a domain. 

Trigger definition 

This is used to create a trigger. 

Schema routine 

This is used to define a schema procedure or a schema function. 

Grant statement 

This is used to grant privileges and role authorizations. 

Role definition 

This is used to create a role. 



 
 
  

Daffodil DB          141 
 

Examples 

Create a schema for sample database 

CREATE SCHEMA SampleDatabaseSchema 

Create a table called Post in schema SampleDatabaseSchema 

CREATE TABLE SampleDatabaseSchema.Post (PostID int, PostName varchar (20), PostRank 
VARCHAR (20)) 

Example 1 

CREATE SCHEMA Schema_Name AUTHORIZATION User_Name CREATE Role Role_Name 

Example 2 

CREATE SCHEMA Schema_Name AUTHORIZATION User_Name CREATE TABLE 
Table_Name ( Column1 integer ,  Column2 varchar(20) ) 

 

Create User Statement 
Create user Statement is used to create a user in the database. By default, user has no access to 
SQL data objects like table, schema etc. until the user creates its own tables and schemas or he had 
been explicitly granted privileges by another user to create data objects. 

Syntax  

CREATE USER <user name> PASSWORD <password name> 

User name 

It specifies the name of the new user. You cannot use the keyword PUBLIC or an existing role 
name for the user name. 

Password  

It is the password associated with the user. 

The user name and password name must follow the rules of SQL Identifiers. 

Example 

Create User Marty PASSWORD marty 

Above example creates a user ‘Marty’  in the database whose password is ‘marty’ . 

 

Create User user1 PASSWORD user1 

Create User user2 PASSWORD user2 

Create User user3 PASSWORD user3 

Above examples creates multiple users with name ‘user1’ , ‘user2’ , ‘user3’  in the database whose 
password is ‘user1’ , ‘user2’ , ‘user3’ . 

 



 
 
  

Daffodil DB          142 
 

Alter Table Statement 
Alter table changes the table definition and modifies the structure of the table.  

The ALTER TABLE statement allows you to: 

•  Add column to a table. 

•  Add constraint to a table. 

•  Drop an existing constraint from a table. 

•  Add a default value for an existing column in a table. 

•  Drop a default value for a column in a table by setting the default value to null. 

Syntax 

ALTER TABLE <table name> <alter table action> 

<alter table action> ::=  <add column definition> | <alter column definition>| <drop column 
definition>| <add table constraint definition><drop table constraint definition> 

<add column definition> ::=ADD [ COLUMN ] <column definition> 

<alter column definition> ::=ALTER [ COLUMN ] <column name> <alter column action> 

<alter column action> ::= <set column default clause> <drop column default clause> 

<set column default clause> ::=SET <default clause> 

<drop column default clause>::=DROP DEFAULT 

<drop column definition> ::=DROP [ COLUMN ] <column name> <drop behavior> 

<add table constraint definition> ::= ADD <table constraint definition> 

<drop table constraint definition> ::=  DROP CONSTRAINT <constraint name> <drop behavior> 

Table name 

The table name refers to an existing table in the database. 

Alter table action 

The action allows adding or dropping a constraint or column. It can be of the following types: 

 
Add column definition 

This definition adds a column to a table. The syntax for the Column Definition for a new column 
is same as that for a column in the CREATE TABLE statement. This means that a column 
constraint can be placed on the new column within the ALTER TABLE ADD COLUMN 
statement. However, column with a NOT NULL constraint can be added to an existing table if and 
only if the table is empty; otherwise, an exception is thrown, when the ALTER TABLE statement 
is executed. 

Alter column definition  

It changes the column and its definition. The alter column action can be of any of the following 
types: 

1) Set column default clause:  Sets the default clause for a column. 



 
 
  

Daffodil DB          143 
 

2) Drop column default clause: Drops the default clause from a column. 

Drop column definition 
This definition destroys a column of the base table depending upon the drop behavior. 
 
Add Table Constraint Definition 
This definition adds a Constraint to a table. 
 
Drop Table Constraint Definition 
This definition destroys a constraint on the table depending upon the drop behavior. 

Drop behavior 

Drop behavior can be either restrict or cascade. 

The optional RESTRICT qualifier to a DROP statement allows a drop only if no objects are 
dependent on the column or constraint. The optional CASCADE qualifier to a DROP statement 
drops all related objects to the column or constraint. 

Examples 

Add a new column with a column-level constraint to an existing table. 

An exception will be thrown if the table contains any rows. 

ALTER TABLE ClassProperties ADD COLUMN Sections VARCHAR(6) CONSTRAINT 
new_constraint NOT NULL 

Add a default value to a column (existing rows are not affected). 

ALTER TABLE Post alter column postrank set DEFAULT ’1’ 

Add a table constraint. 

Alter Table marksRecord Add constraint marksCheck_constraint check(marks<100) 

Drop a table constraint. 

Alter table marksRecord Drop constraint marksCheck_constraint cascade 



 
 
  

Daffodil DB          144 
 

Drop Table Statement 
 
DROP TABLE removes the specified table. 

Syntax  

DROP TABLE <table name> [ <drop behavior> ] 

<drop behavior> ::= CASCADE | RESTRICT 

Restrict 

If RESTRICT is specified, and if there are any table constraints, or views that use the table name, 
then neither the table is dropped nor the table constraints or the views referring it. 

Cascade 

With CASCADE, all indexes, columns, constraints, triggers, and SQL routines that are associated 
with table name are dropped as well as the table. RESTRICT is by default. 

Example 

Drop table Student restrict 

This is used to drop the table Student. 

Drop View Statement 
 
A Drop View Statement drops a view. 

Derived Tables or “ Virtual Tables”  are known as Views. They provide an alternative way to look 
at the data of one or more tables. This virtual table or view derives its values from the evaluation 
of a query expression in the Create View statement. The query expression can reference base 
tables, other views, aliases, etc. Essentially, a view is a stored Select statement, of which you can 
retrieve results at a later time by querying the view as though it was a table. A view can be read-
only or updatable. 

Syntax 

<drop view statement> ::= DROP VIEW <table name> <drop behavior> 

<drop behavior> ::= CASCADE | RESTRICT 

CASCADE  

If a view is referenced i.e. used by some other objects, then view and objects, which are referring 
this view are also dropped. 

RESTRICT 

If a view is referenced or is in use by some other objects, then this view is not dropped. 

Example 

DROP VIEW v1 RESTRICT 

Above example drops view v1, if it is not referenced by any another SQL object. 

DROP VIEW v2 CASCADE 

Above example drops view v2 and all other SQL object referring this view. 



 
 
  

Daffodil DB          145 
 

Drop Index Statement 
This statement drops the specified index from the database on the specified table. Indexes are also 
dropped, if you explicitly drop the table on which indexes are created. 

Syntax 

DROP INDEX  <index name> Of <table name> 

Index Name 
It is the name of the index to be deleted. 
 
Table 
It is the name of the table on which index to be deleted was created. 

Example 

DROP INDEX TeacherNameIndex1 OF Teacher. 

Above Example deletes the index TeacherNameIndex1 on table Teacher. 

Drop FullText Index Statement* 
This statement drops a specified FullText index from the database on a specified table. FullText 
indexes are also dropped, if you explicitly drop the table on which FullText indexes are created. 

Syntax 

DROP FULLTEXT INDEX <index name> of <table name> 

Index Name 
It is the name of the FullText index to be deleted. 
 
Table 
It is the name of the table on which the FullText index to be deleted was created. 

Example 

DROP FULLTEXT INDEX TeacherNameIndex1 OF Teacher. 

Above Example deletes the FullText index TeacherNameIndex1 on the table Teacher. 

Drop Schema Statement 
The DROP schema statement destroys a schema in the database. 

Schema 
A schema is a logical grouping of tables, indexes, triggers, routines, and other data objects under 
one qualifying name. 

Syntax 

DROP SCHEMA <schema name> <drop behavior> 

<Drop behavior> ::= CASCADE  

| RESTRICT 

rajat.chugh
* Features that are not supported in One$DB



 
 
  

Daffodil DB          146 
 

Schema name  

The schema name refers to the unique name of the schema.  

Drop behavior  

If RESTRICT is specified, and if there are any tables or SQL routines or etc. in the schema name, 
then the schema is not dropped and neither are the tables in the SQL routines. With CASCADE, 
all tables, indexes, columns, constraints, triggers, and SQL routines etc. that are associated with 
schema name are dropped along with the schema.  

RESTRICT is by default. 

Example 

Drop Schema SampleDatabaseSchema cascade 

This is used to drop the schema SampleDatabaseSchema. 
 
Drop Procedure Statement 
Drop procedure statement is used to drop a previously defined SQL stored procedure. To drop a 
procedure you should have corresponding specific name of the SQL stored procedure. Because of 
this it is recommended that you specify a <specific name> at the time of defining SQL stored 
procedures. 

Syntax 

DROP <specific routine designator> <drop behavior> 

<drop behavior> ::= 

RESTRICT 

| CASCADE  

<specific routine designator> ::= SPECIFIC PROCEDURE <specific name> 

CASCADE  

Cascade statement drops procedure and all its dependent objects. 

RESTRICT 

Restrict drops Procedure only if there are no other dependent objects. 

Example 

DROP SPECIFIC PROCEDURE student_row_insert CASCADE 

Above Example drops procedure named student_row_insert and all its dependent objects. 



 
 
  

Daffodil DB          147 
 

Drop Trigger Statement 
Drop Trigger Statement removes trigger from the current database. You can remove a trigger by 
dropping the trigger itself or by dropping the trigger table. 

Syntax 

DROP TRIGGER <trigger name> 

Trigger name 

It is the name of the trigger that is to be removed. 

When a table is dropped, all triggers on that table are automatically dropped.  

Note: - You don’t have to drop table triggers before dropping the table. 

Example 

DROP TRIGGER Insert_Teacher_Trigger 

Above Example removes the trigger Insert_Teacher_Trigger entry specified in the System Table. 

Drop User Statement 
Drop user Statement is used to drop an existing user from database. When you drop an existing 
user (suppose ‘Marty’ ) from database then all the schema objects (like tables, views, procedures 
etc… ) whose owner is user ‘Marty’  are dropped implicitly. 

Syntax  

DROP USER <user name>  

User name 

User name specify an existing user in database. 

Example 

Drop User Marty  

Above example drops an existing user ‘Marty’  from database.  



 
 
  

Daffodil DB          148 
 

PSM 

 
PSM stands for Persistent Stored Module. The purpose of PSM is to combine database language 
and procedural programming language. PSM extends SQL by adding constructs found in 
procedural languages, resulting in a structural language that is more powerful than SQL. The basic 
unit in PSM is a block. All PSM programs are made up of blocks, which can be nested within each 
other. PSM is structured into blocks and can use conditional statements, loops and branches to 
control program flow. Variables can be scoped so that they are only visible within the block where 
they are defined. PSM blocks come in three types; these are procedure, triggers and cursors. All of 
these block types share most PSM features so during this tutorial the features that apply to all 
block types will be grouped into single subjects.  Typically, each block performs a logical action 
in the program. A block has the following structure: 
 
 
BEGIN   
 
/* Declarative section: variables, types, and local subprograms. */ 
      (Statements that make up the block) 
 
DECLARE 
 
/* Executable section: procedural and SQL statements go here. */ 
/* This is the only section of the block that is required. */ 
     (Definition of any variables or objects that are used within the declared block.)  
 
END; 
 
     (End of block marker.) 
 
 
EXAMPLE OF  PSM BLOCK IS : 
 
create procedure ddbproc() specific s_ddbproc 
          begin 
           declare aa int;  
            set aa = 11;  
               lab :  
              repeat  
               if aa=19 then  
                  set aa = aa+1;  
                            leave lab;  
                    else  
                         insert into student(studentid,studentname) values(aa,0); 
               end if;  
                 set aa = aa+1;  
               until aa>=100  
              end repeat;  
end 



 
 
  

Daffodil DB          149 
 

EXAMPLE FOR NESTED BLOCK IS: 
 
create procedure p1(in a int) specific p 
    as begin 
         begin 
              declare d int; 
                             select studentid  into d from student where studentid=10; 
                             insert into teacher(employeeid,teachername) values(d+10,’a’); 
                 begin 
                         declare d int; 
                          set d=10; 
                          set d=a+d; 
                                 insert into student(studentid,studentname) values(d,’a’); 
                  end; 
           end; 
     end; 
 
 
THE RULES OF BLOCK STRUCTURE ARE :- 
 
Every unit of PSM must constitute a block. As a minimum there must be the delimiting words 
BEGIN and END around the executable statements.  
 
SELECT statements within PSM blocks are embedded SQL (an ANSI category). As such they 
must return one row only. SELECT statements that return no rows or more than one row will 
generate an error(but not in case of cursor). If you want to deal with groups of rows you must 
place the returned data into a cursor. The INTO clause is mandatory for SELECT statements 
within PSM blocks (which are not within a cursor definition), you must store the returned values 
from a SELECT. 
 
If PSM variables or objects are defined for use in a block then you must also have a DECLARE 
section. 
 
PSM blocks may be nested, nesting can occur wherever an executable statement could be placed 
(including the declare section). 



 
 
  

Daffodil DB          150 
 

Data Manipulation Language 

 
Insert Statement 
 
An INSERT statement creates a row or rows and stores them in the named table. The number of values 
assigned in an INSERT statement must be the same as the number of specified or implied columns. 

Syntax  

INSERT INTO <insertion target> <insert columns and source> 

<insertion target> ::=<table name> <insert columns and source> ::=<from subquery><from 
constructor><from default> 

<from subquery> ::= [ <left paren> <insert column list> <right paren> ] <query expression> 

<from constructor> ::= [ <left paren> <insert column list> <right paren> ] <contextually typed 
table value constructor> 

<from default> ::= DEFAULT VALUES 

<insert column list> ::= <column name list> 

<contextually typed table value constructor> ::= VALUES <left paren> <Expression> [ { 
<comma> <Expression> }… ] <right paren> 

Table name  

Table name is the name of a table in which the row will be inserted. 

Insert Column list 

Is a list of one or more columns in which data is to be inserted. Column list must be enclosed in 
parentheses and delimited by commas. If a column is not in column list, Daffodil DB automatically 
provides a value for the column if the column has a default value. If column list is specified then the 
values inserted through the use of constructor or the SubQuery should come in the same order. 

Contextually Type Value Constructor 

Value Constructor specifies column values to be inserted in a table. There are two ways with 
which we can specify column values to be inserted in a column. We can specify values for a 
record of table or we can specify values for multiple records of a table like: 

• Values ( 1, 2,’ sapling’ ), specify 1, 2 and ‘sapling’  as the single record values. In this, 
cardinality (i.e. no of columns) is 3. 

• Values ((1, 2,’ sapling’ ), (2, 3,’ daffodil’ ), (3, 4,’ transport’ )), specify values for 3 records. 
In this, cardinality is 3. 

Insert Columns and Source 

There are 3 sources from which we can put values in the table through insert query. 

From SubQuery 

You can use the output from a SubQuery to insert values into the table specified by insertion 
target. The following Constraints are applied 

 



 
 
  

Daffodil DB          151 
 

From SubQuery includes Insert Column List as an Optional Rule. It means value of this rule can 
be null or not null.  

If insert column list is null then all the columns of the target table acts a target in which values are 
to be inserted from the select list of columns of select query, provided cardinality of target table 
(i.e. no of columns in target table) should be same as the cardinality of select query (i.e. no of 
columns in the select list of select query) and columns descriptors i.e. data type of columns of 
target table and select query should be the same. 

 If insert column list is not null then all the columns in insert column list acts a target in        
which values are to be inserted from the select list of columns of select query, provided cardinality 
of target table (i.e. no of columns in target table) should be same as the cardinality of select query 
(i.e. no of columns in the select list of select query) and columns descriptors i.e. data type of 
columns of target table and select query should be the same. 

Example 

In the example given below we insert values of columns subjectID, examID for studentID =  
3.Values returned by the subquery acts as input to the insert to insert new values in the record. 

INSERT INTO MarksRecord (subjectID, examID) (SELECT subjectID, examID FROM 
MarksRecord WHERE StudentID = 3) 

From Constructor 

You can use the output from a value constructor to insert values into the table specified by 
insertion target.  The following Constraints are applied: 
From Constructor includes Insert Column List as an Optional Rule. It means value of this rule can 
be null or not null. 

If insert column list is null then all the columns of the target table acts a target in which values are 
to be inserted from the values in the constructor, provided cardinality of target table (i.e. no of 
columns in target table) should be same as the cardinality of constructor (i.e. no of columns in the 
value constructor) and columns descriptors i.e. data type of columns of target table and value 
constructor should be the same. 

If insert column list is not null then all the columns in insert column list acts a target in        which 
values are to be inserted from the value constructor, provided cardinality of target table (i.e. no of 
columns in target table) should be same as the cardinality of value constructor (i.e. no of columns 
in the value constructor) and columns descriptors i.e. data type of columns of target table and 
value constructor should be the same. 

Example 

In the example given below we insert values in SUBJECT table through the use of constructor. 
There must be one data value for each column in column list (if specified) or in the table. The 
values list must be enclosed in parentheses. If the values in the VALUES list are not in the same 
order as the columns in the table or do not have a value for each column in the table, column list 
must be used to explicitly specify the column that stores each incoming value. 

Insert into SUBJECT  VALUES(10,’Biology’) 

For inserting values for more than one records at a time you have to use constructor within a 
constructor.   

Insert into SUBJECT values(21,’physics’),(31,’chemistry’),(41,’geography’) 



 
 
  

Daffodil DB          152 
 

In example given below default values inserted into the SCHOOL table. If default values does not 
specified for the columns then NULL is inserted 

Insert into SCHOOL  VALUES(100, default, default, default, default) 

 
Update Statement 
UPDATE statement is used to modify existing data in a table. Data can be modified in a single 
row, a group of rows or all the rows in a table. However, an UPDATE statement referencing a 
table can change the data only in one base table at a time. The UPDATE statement does not affect 
the row count of a table. 

Syntax 

UPDATE <target table> SET <set clause list>[ WHERE <search condition> ] 

<target table> ::= [<left paren>] <table name> [<right paren>]  

<set clause list> ::=<set clause> [ { <comma> <set clause> }... ] 

<set clause> ::= <update target> <equals operator> <update source> 

<update target> ::= <column name> 

<update source> ::=<expression> 

<search condition> ::=<boolean expression> 

Target Table  

Target table is the name of the table to be updated. 

Set Clause List 

Set Clause List specifies the list of column or variable names to be updated. It specifies a list of 
attribute value pairs separated by equals’  operator. 

Update Target 

Update Target is a Column name that contains the data to be changed. Column name must reside 
in the table specified in the UPDATE clause.  

Update source  

It can be any valid SQL expression or a column. SQL Expression value or column value acts as 
input value to be updated in the column. 

Example 

In the example given below table STUDENT is updated, the condition specified is the 
StudentID=2 and value of the StudentName will be changed to 'Fleming' if the condition is met. 

Update Student set StudentName='Fleming' where StudentID=2 

In the example given below 2 columns are updated by the given values if the condition StudentID 
=1 is met. 

Update Student set StudentName= 'Tony', Gender = 'F'  where StudentID=1 



 
 
  

Daffodil DB          153 
 

Delete Statement 
Delete statement deletes one or more than one rows from a table depending upon the condition 
specified by the user in the WHERE clause. If no condition is specified then all the rows in the 
table are deleted. 

Syntax 

DELETE FROM <target table> [ WHERE <search condition> ]<target table> ::= [<left paren>] 
<table name> [<right paren>]   

<search condition> ::=< Boolean Expression> 

Target table 

It is the name of the table from which the rows are to be removed.  

WHERE 

WHERE clause specifies the conditions used to limit the number of rows that is to be deleted. 
Where Clause is Optional in Delete Statement, means either it can present or not. If a WHERE 
clause is not supplied, DELETE removes all the rows from the table, else deletes the rows of table 
according to condition specified. 

Search Condition 

It specifies the restricting condition for the rows to be deleted. There is no limit to the number of 
predicates that can be included in a search condition.  

The DELETE statement may fail if it violates a trigger or attempts to remove a row referenced by 
data in another table with a FOREIGN KEY constraint. If the DELETE removes multiple rows, 
and any one of the removed rows violates a trigger or constraint, the statement is cancelled, an 
error is returned, and no rows are removed. 

However, an empty table or view cannot be deleted from the database. To delete it from the 
database, it must be explicitly removed using the DROP TABLE OR DROP VIEW statement. 

Examples 

Use DELETE with no parameters 

This example deletes all rows from the Post table. 

DELETE FROM Post 

Use DELETE on a set of rows 

This example deletes all rows in which ClassID is less than 6 from the classproperties table. 

DELETE  FROM  classproperties where ClassID < 6 

Use DELETE based on a SubQuery. 

This example is used to delete records from Teacher table that is based on a IN predicate. It 
removes rows from the Teacher table using a sub query that returns the post id related with post 
name as ’Teacher’. 

DELETE FROM Teacher WHERE PostID IN     (SELECT  PostID FROM Post    WHERE 
PostName = ’ Teacher ’) 



 
 
  

Daffodil DB          154 
 

Data Query and Control Language 

 

Select Statement 
The SELECT Statement is a DQL (Data Query Language). It queries the database and retrieves 
rows from the database, thus allowing the selection of one or many rows or columns from one or 
many tables.  

Syntax 

SELECT  [ <set quantifier> ] [ <top function> ] <select list> <table expression> 

<set quantifier> ::= DISTINCT | ALL  

<select list> ::= <select sublist> [ { <comma> <select sublist> }... ] 

<table expression> ::= 

<from clause>  

[ <where clause> ] 

[ <group by clause> ]  

[ <having clause> ] 

[ <order by clause> ] 

<top function> ::= TOP <left paren> <unsigned integer> <right paren> 

Select List 

<select sublist> ::=<derived column> | <qualified asterisk> 

<qualified asterisk> ::= <asterisk> | <asterisked identifier chain> <period> <asterisk> 

<asterisked identifier chain> ::=<asterisked identifier> [ { <period> <asteriskedidentifier> }... ] 

<asterisked identifier> ::= <identifier> 

<derived column> ::=<Expression> [ <as clause> ] 

<as clause> ::= [ AS ] <column name> 

Distinct/All 

These are the optional set quantifiers. DISTINCT specifies the discarding of the duplicate records 
when the two or more records in the selected columns are same. ALL, on the contrary returns all 
the records including the duplicate records. 

TOP Function 

The TOP Function displays the top ‘n’  records from the result set, where ‘n’  is the argument 
passed to the function. 



 
 
  

Daffodil DB          155 
 

Select list  
It is the list of the columns, separated by comma that the user wishes to retrieve. The Select list, 
can be  

• simply an asterisk, ‘*’  , to select all the columns of the table in the FROM clause. 

• specific fields’  names to select selected columns. 

• some expression using the aggregate functions or some operator, etc. 

Table expression 

Table Expression lists the source of the tables from which the columns specified in the <select 
list> are to be retrieved as well as the conditions that are to be applied over them. Table 
Expression can be formed of the various clauses as indicated i.e. FROM clause that is mandatory 
and WHERE clause, GROUP BY clause, HAVING clause and ORDER BY clause that are 
optional. These clauses will be explained in detail later. 

Example 1 

Select * from Subject 

SubjectID SubjectName 

1 Biology 
2 English 
3 Mathematics 
4 Science 
5 Social Studies 

The above query lists all the records from the Subject table. This is specified by the asterisk, ‘*’ , 
which is used to select all the rows from the table specified. Here the quantifier is by default ALL. 
This means all the records, irrespective of whether there are any redundant records, will be 
displayed. The above result shows the first 5 rows. 

Example 2 

To specify explicitly, the listing of all the records, ALL can be used as shown, which is otherwise 
same as the query above. 

Select all * from Subject  

Example 3 

To remove the duplicate records the keyword DISTINCT is used as shown below, which will 
again list all the records of the Subject Table, but this time after dropping the duplicates. 

Select distinct * from Subject  

SubjectID SubjectName 

1 Biology 
2 English 
3 Mathematics 
4 Science 
5 Social Studies 



 
 
  

Daffodil DB          156 
 

Here the result is same, because there are no duplicate columns. 

Example 4 

The following example results in the listing of the specified columns only. 

Select StudentName, RollNumber, Gender from Student 

Result 

StudentName RollNumber Gender 

Catherine 1001 F 
John 1002 M 
Cathe 1003 F 
John 1004 M 
Woll 1005 F 

The above result shows the first five rows only. 

Example 5 

select TOP (5) (marks*100 /500) as Percentage, StudentID, SubjectID from MarksRecord 

Result 

Percentage StudentId SubjectID 

19.6 1 1 
17.4 1 2 
19.8 1 3 
15.6 1 4 
10.4 1 5 

The above query is another form of the SELECT queries, where we have used TOP function to 
list the top 5 students from the list. To show the implementation of the mathematical expression in 
SELECT statement, we have calculated the percentage taking the maximum marks as 500. Also 
the column aliasing has been used in the query, where the first column has been renamed to 
Percentage. 

Example 6 

The following query shows another way of column selection. Here all the columns of Teacher get 
selected, but just one column of Post. 

Select  a.TeacherName, a.Salary, b.PostName from Teacher as a, Post as b where a.PostID = b.PostID 

TeacherName Salary PostName 

Mr. Agregado 10000 Principal 

Mr. Brumfield 8500 Vice-Principal 

Ms. McKelvey 6000 Teacher 

Mr. Everett 6000 Teacher 

Mr. Verstrepen 6000 Teacher 

Here only the first five records of the query result have been shown. 



 
 
  

Daffodil DB          157 
 

FROM CLAUSE 
It specifies the tables, views, derived tables, and joined tables used in DELETE, SELECT, and 
UPDATE statements. Based on the SELECT statement a few Examples involving FROM have 
been already given. As a matter of fact, the FROM clause is mandatory in the SELECT statement. 

Syntax 

<from clause> ::=  FROM  <table reference list> 

<table reference list> ::= <table reference> [ { <comma> <table reference> }... ] 

<table reference> ::= <table primary>  | <joined table> 

<table primary> ::=<table or query name> [ [ AS ] <correlation name>]                                   | 
<derived table> [ AS ] <correlation name> 

|<left paren> <table reference> <right paren> 

<derived table> ::= <table subquery> 

<joined table> ::= <cross join> | <qualified join> 

<cross join> ::=  <table reference> CROSS JOIN <table reference> 

<qualified join> ::= <table reference> [<outer join type> ] JOIN <table reference><join 
condition> 

<outer join type> ::=  LEFT | RIGHT | FULL    

<join condition> ::= ON <search condition>  

<search condition> ::= <Boolean Expression> 

Table Reference 

A list of one or more table or view names (separated by commas), from which the data value are to 
be retrieved. Table reference can be Simple table or Joined table. The Joined Table is obtained as 
a result of any join operations which will be discussed later. 

Table Primary 

Table Primary is formed of Table Name or the Query Name. Its represents tables, views, queries and 
joins 
 
Table or query name: includes name of the table from which we want to retrieve the data.We can 
specify the name of table with its  schema name or without schema name. If no schema name is 
specified then ,the current schema is assumed. 

 

Joined Table 

It specifies the intermediate result table that is the result of either equi-join or an outer join. The 
operators that could be applied are: CROSS JOIN, LEFT OUTER JOIN, RIGHT OUTER JOIN, 
and FULL OUTER JOIN. 

Joined Condition 

It defines a search condition in which predicates can be combined. 



 
 
  

Daffodil DB          158 
 

Examples 

Some of the examples have already been discussed in the detailing of the SELECT statement.  

Select ExamName, MaximumMarks, PassingMarks from Exam 

Result 

ExamName MaximumMarks PassingMarks 

Final year 600 250 

Half yearly 600 250 

Session1 600 250 

Session2  600 250 

This query, which is the simplest of all, lists the Name of the Exam, Maximum Marks for the 
exam and the passing marks of the Exam as the output. We can also select more than one table 
from in the Table Reference List, the example for which is listed next 

Select t.TeacherName,t.DateOfJoining,t.salary,p.PostID From Teacher as t, Post as p 

Result 

TeacherName DateOfJoining Salary PostID 

Mr. Agregado 1996-04-17 10000 1 
Mr. Brumfield 1997-07-01 8500 1 
Ms. McKelvey 1998-09-25 6000 1 
Mr. Everett 1998-10-25 6000 1 

The result shows the first four rows of the result only. 

The above query takes two tables in the from clause, but it is inefficient in the way that it lists out 
all the records of the tables, i.e. displays the Cartesian Product of the two tables, which is not what 
the user wants always. Here, though, only the first four records have been shown. The p.PostId 
field shows the Cartesian product being carried out in the operation. This type of operations, 
involving more than one table, need to be controlled. The next example shows exactly this, by 
forcing the condition in the where clause. 

select t.TeacherName, t.DateOfJoining, t.salary, p.PostID  

from Teacher as t, Post as p 

where t.PostID = p.PostID 

Result 

TeacherName DateOfJoining Salary PostID 

Mr. Agregado 1996-04-17 10000 1 
Mr. Brumfield 1997-07-01 8500 2 
Ms. McKelvey 1998-09-25 6000 3 
Mr. Everett 1998-10-25 6000 3 

The above result shows the first 4 rows of the result. 



 
 
  

Daffodil DB          159 
 

This is the improvised version of the previous query as it limits the output, and displays only those 
records for which the PostId value of the tables is same. Such types of operations are also called 
the JOIN operations. We can perform such operations using other keywords, like INNER JOIN, 
LEFT JOIN etc., which we are going to discuss next. 

JOIN OPERATION 
As explained briefly in the above discussion,, there is a need to combine two or more tables for 
the desired output many a times This leads to a correlation among the tables in the from clause. 
This is exactly what JOIN does i.e., combining two or more tables to produce the expected results. 
Join is performed whenever there are more than two tables in the from clause and frequently based 
on the condition mentioned in the where clause. This condition is better known as join condition. 

 Without the condition, the join will take the form of Cartesian Product, resulting in all the 
possible combinations of the involved tables. e.g. the join of two tables with 3 and 4 records 
respectively, will result in the output of 12 (i.e. 4 X 3) records. 

Cross join 

The Cross Join logical operator joins each row from the first table with each row from the second 
table. Thus it is the basic of all the joins and is not very efficient, but still illustrates the table 
unification characteristic of all the joins. 

Example: 

Select Classes.*, Exam.ExamID, Exam.ExamName  from Classes CROSS JOIN Exam 

Result 

ClassID ClassName SchoolName ExamID ExamName 

1 6th  1 1 Final year 

1 6th 1 2 Half yearly 

1 6th 1 3 Session1 

1 6th 1 4 Session2 

2 7th 1 1 Final year 

This is the basic query for the cross join. Since the classes table consists of 3 entries and the exam 
table consists of 4 entries, the cross join of the two will result in 12 entries, i.e. 4 X 3 entries. But 
here, only the first five rows have been displayed. 

Qualified join: 

The qualified join further is categorized into 

Left Outer Join/ Left Join. 

Right Outer Join/ Right Join. 

Full Outer Join/ Full Join. 

Left Outer Join/ Left Join: 

In this case all the rows of the Left table will appear at least once. The Left Outer Join logical 
operator returns each row that satisfies the join condition between the Left table and the Right 



 
 
  

Daffodil DB          160 
 

table. In case a row of Left Table does not match with any row of the Right Table, then the 
corresponding record will still be displayed with Null value in the corresponding columns of the 
Right Table. 

 

Example 

The left outer join can be exemplified by the same query. As already mentioned - applying the left 
outer join outputs those values too, from the table1 which do not match to any value in the table2. 

Select  

StudentName, ClassName, RollNumber 

 From  

Student LEFT OUTER JOIN Classes 

 on 

 Student.ClassID = Classes.ClassID 

Result 

StudentName ClassName RollNumber 

Catherine 6th 1001 
John 6th 1002 
Cathe 6th 1003 
John 6th 1004 
Woll 6th 1005 

Here again, only the first five rows have been displayed. 

Right Outer Join/Right Join : 

In this case all the rows of the Right table will appear at least once. The Right Outer Join/Right 
Join logical operator returns each row that satisfies the join condition between the Left table and 
the Right table. In case a row of Right Table does not match with any row of the Left Table, then 
the corresponding record will still be displayed with Null value in the corresponding columns of 
the Left Table. 

Example: 

Same query can be used to exemplify the Right Outer Join. But this time all the rows from the 
second table are displayed at least once in the result. The rows for which there is no match in the 
first table are displayed only once after being joined with Null value of the first table.  

select  

StudentName, ClassName, RollNumber 

 from  

Student RIGHT OUTER JOIN Classes 

on 

Student.ClassID = Classes.ClassID 



 
 
  

Daffodil DB          161 
 

Result 

StudentName ClassName RollNumber 

Catherine 6th 1001 

John 6th 1002 

Cathe 6th 1003 

…  …  .. 

NULL 8th NULL 

In the result shown above, first three and the last row has been displayed. The last row shows that 
for the value in the right table, which did not find any corresponding value in the left table; NULL 
values are assigned for the corresponding left table values. 

Full Outer Join/ Full Join: 

The Full Outer Join logical operator returns each row satisfying the join predicate from the first 
table joined with each row from the second table. It also returns rows from:  

- the first table that had no matches in the second table.  

- the second table that had no matches in the first table. 

The input that does not contain the matching values is returned as a null value. 

Example: 

We consider the same query for the Full Outer Join as well. 

select  

StudentName, ClassName, RollNumber 

 from  

Student FULL OUTER JOIN Classes 

 on 

 Student.ClassID = Classes.ClassID 

Result 

StudentName ClassName RollNumber 

Catherine 6th 1001 

John 6th 1002 

Cathe 6th 1003 

…  …  .. 

NULL 8th NULL 

Here in the above shown result too, the first three and the last row of the result is displayed. The 
last row shows that for the value in the right table, which did not find any corresponding value in 
the left table, NULL values are assigned for the corresponding left table values. 



 
 
  

Daffodil DB          162 
 

This time, all the rows of first table and second table are displayed as the result. The rows in the 
first table or the second table which have no matching value in the corresponding table are 
displayed only once, with the other table value being Null value, i.e. if there is some row in the 
first table which has no match in the second table, is shown once in the result, with the 
corresponding value of the second table being NULL and vice versa. 

WHERE CLAUSE 
A WHERE clause is an optional part of a SELECTstatement, DELETE statement, or UPDATE 
statement. But whenever present, it follows the from clause and itself is followed by a Conditional 
Expression. Thus it performs the job of filtering the rows from the tables listed in from clause, which 
satisfy the following condition. 

Syntax 

<WHERE CLAUSE> ::= WHERE  <search condition> 

 

Search Condition 

It defines the condition to be met by the rows to be returned. There is no limit to the number of 
predicates in the search condition. The various operators that may be used in the conditional 
expressions are “ =” , “ <” ,”<=” , “ >=” , etc. Apart from these operators, we can have predicates like 
IN predicate , Between predicate, Like Predicate , and so on , used to form the search condition. 

Examples 

select TeacherName, DateOfJoining, Salary from Teacher where EmployeeID <=3  

Result 

TeacherName DateOfJoining Salary 

Mr. Agregado 1996-04-17 10000 

Mr. Brumfield 1997-07-01 8500 
Ms. McKelvey 1998-09-25 6000 

The above query outputs the Name of the Teacher, Date of Joining, and, Salary from the Teacher 
table for the employees whose EmployeeID is less than or equal to 3. 

To take another example involving the implication of the Condition on the string valued fields, the 
query follows: 

select StudentName, RollNumber from Student where StudentName like 'Ca%' 

Result 

StudentName RollNumber 

Catherine 1001 

Cathe 1003 

The above query lists the Names, Roll Numbers and Address of those students whose Name 
begins with ‘Ca’ . Thus, it will result in the output of two records. Here, like is the function that  



 
 
  

Daffodil DB          163 
 

selects only those records where name begins with ‘Ca’ . For obtaining specific values, the <field 
name> of string type, can also be used using the ‘=’  operator just like its use in case of Integer 
field types. 

select StudentName, RollNumber, StudentAddress from Student where StudentName = 'Catherine'  

Result 

StudentName RollNumber StudentAddress 

Catherine 1001  1500 
Warb… … .. 

select TeacherName,DateOfJoining,Salary  from Teacher where Salary IN (8500,10000) 

Result 

TeacherName DateOfJoining Salary 

Mr. Agregado 1996-04-10 10000 

Mr. Brumfield 1997-07-01 8500 

Clearly, the above query lists out the records of all the Teachers whose Salary is either 8500, or 
10,000. The IN clause will be detailed later. 

GROUP BY CLAUSE 
A GROUP BY clause, part of a SELECT statement, groups a result into subsets that have 
matching values for one or more columns. GROUP BY clause is optional and follows the 
WHERE clause, and if WHERE clause is not present, it follows FROM clause. It operates on the 
rows filtered by the WHERE clause. This clause performs the function of grouping the rows 
based on the common values in the grouping columns. The GROUP BY clause restricts the rows 
of the result set i.e, in each group, no two rows have the same value for the grouping column or 
columns. NULLs are considered equivalent for grouping purposes.  

If several single row columns are in a query, GROUP BY returns exactly as many rows as there 
are distinct sets of values in all the single row columns involved in the query. If these columns 
have five sets of values, five rows will result. 

You typically use a GROUP BY clause in conjunction with an aggregate expression. 

 Syntax 

<group by clause> ::= GROUP BY <grouping specification> 

<grouping specification> ::= <grouping set> [ { <comma> <grouping set> }... ] 

<grouping set> ::= <grouping column reference> 



 
 
  

Daffodil DB          164 
 

Example 

In the following query the grouping is done by the ClassID. It combines the Class table and the 
Student table and counts the number of students in each class by grouping them with their ClassID 
i.e. the result of the above query displays the number of students in class with ClassID = 1, 
ClassID = 2 and so on. 

select Classes.ClassID, COUNT(Student.StudentName) from Student, Classes where   
Student.ClassID = Classes.ClassID  group by Classes.ClassID  

 

The COUNT function returns the count of the argument passed. 

Result 

ClassID COUNT 

1 5 
2 5 

The following query calculates the average marks of students according to their StudentID, i.e., 
average marks of all the students with STUDENTID = 1, average marks of all the students with  
STUDENTID = 2, and so on. 

select StudentID , Avg (Marks) as AVGS  from Marksrecord Group By StudentId 

Result 

StudentID AVGS 

1 81.0 
2 82.0 
3 78.0 
4 79.0 

And in this way, average marks for the students grouped by their StudentId will be displayed. 
Here only till the StudentId = 4, have been displayed. 

HAVING CLAUSE 
The HAVING clause specifies a search condition for the grouping and aggregate queries. In 
Grouping Queries, it follows the GROUP BY clause. A HAVING clause restricts the results of a 
GROUP BY in a SELECT statement.  In Aggregate Queries, HAVING follows the WHERE 
clause and if WHERE clause is missing, it follows the FROM clause..It is usually used in the 
GROUP BY clause.  

Like the WHERE clause, HAVING filters the query result rows. WHERE filters the rows from 
the FROM clause and the HAVING clause filters the grouped rows or the aggregated rows. 

Syntax 

<having clause> ::= HAVING <search condition> 

<search condition> ::= <Boolean Expression> 



 
 
  

Daffodil DB          165 
 

Examples 

select  DateOfJoining, count(*) from  Teacher  Group By  DateOfJoining, salary HAVING  Salary <=85000 

Result 

DateOfJoining COUNT 

1996-04-17 1 
1997-07-01 1 

The above query first groups the result set by DateOfJoining and salary and then imposes the 
condition of SALARY <= 8500, thus further filtering the final record set. The above result 
contains just the first 2 rows of the result set. 

UNION OPERATOR 
The UNION operator derives a result table by combining two other result tables (for example 
TABLE1 and TABLE2) and eliminating any duplicate rows in the tables. When ALL is used with 
UNION (that is, UNION ALL), duplicate rows are not eliminated. In either case, each row of the 
derived table is a row from either TABLE1 or TABLE2. By default, the Set Quantifier is 
DISTINCT 

Syntax  

<query expression body> UNION [ <set quantifier> ] <query term> 

<query expression body> ::= <non-join query expression> | <joined table> 

<query primary> ::= <non-join query primary> | <joined table> 

<set quantifier> ::= DISTINCT | ALL 

According to the SQL standards, each corresponding column of both queries must have the same 
column descriptor in order for two queries to be union-compatible. 

Example 

This operation results in the join with the shedding of the duplicates. The following query returns 
the phone numbers of schools and students from School and Student tables.  

select  School.PhoneNumber  FROM School 

UNION 

select Student.PhoneNumber FROM Student 

Phone No. 

(219) 248 – 8261 
(408) 615 – 7297 
(408)615-2250 
…  
1-828-675-
4262 
 



 
 
  

Daffodil DB          166 
 

In the above result, first three and the last record is displayed. 

If the ALL is used with UNION operator, it retains the duplicate records. The syntax for the 
UNION with ALL though remains the same as shown in the following query. 

select  School.PhoneNumber  FROM School 

UNION ALL  

select Student.PhoneNumber FROM Student         

Result 

Phone No. 

1-828-675-4262 
(408)615-2250 
(408) 615 - 7297 
…  
(440) 238 - 
7297 
 

In this case, the result of the UNION queries, with the use of ALL or DISTINCT yields the same 
result, because there are no duplicate records. 

INTERSECT OPERATOR 
The INTERSECT works opposite to the UNION operator. Unlike the UNION operator which 
outputs the distinct records, the INTERSECT operator displays the records which are common for 
both the queries. When ALL is used with INTERSECT (that is, INTERSECT ALL), duplicate rows 
are not eliminated. In either case, each row of the derived table is a row from either TABLE1 or 
TABLE2. By default, the Set Quantifier is DISTINCT 

Syntax  

<query expression body> INTERSECT [ <set quantifier> ] <query primary> 

<query expression body> ::= <non-join query expression> | <joined table> 

<query primary> ::= <non-join query primary> | <joined table> 

<set quantifier> ::= DISTINCT | ALL 

Example 

select ClassID from Classes  

INTERSECT  

Select ClassID from Student 

Result 

ClassID 

1 
2 



 
 
  

Daffodil DB          167 
 

The above query displays the results in which the ClassID field have same values for both the 
tables. If ALL is used with INTERSECT operator, it retains the duplicate records. The syntax for 
the INTERSECT with ALL though remains the same as shown in the following query. 

select SubjectID from ClassProperties  

INTERSECT ALL 

select SubjectID from Marksrecord 

Result 

SubjectID 

1 
1 
1 
1 
…  
6 
6 
6 

Because of the ALL keyword, after performing the INTERSECT, the lesser number of copies of 
the records with same value, from either of the two tables, are displayed. In the above query , 
since, the number of records with value 2, in the ClassProperties is more than the number of 
records with the same value in the Marksrecord, in the final result, three records are displayed.  

ORDER BY 
The ORDER BY clause is an optional element of a SELECT statement which allows you to 
specify the order in which rows appear in the Result Set. 

The rows are sorted first according to the first column specified in the Order By clause. If there are 
any duplicate values for this column, then the duplicate rows are sorted on the second 
column(within the first column sort) in the Order By list , and so on. ASC and DESC request the 
sorting in Ascending and Descending order respectively. By default, the values are sorted in 
Ascending Order. 

Syntax 

<order by clause> ::=  ORDER BY <sort specification list> 

<sort specification list> ::= <sort specification> 

 [ { <comma> <sort specification> }... ] 

<sort specification> ::= < expression > [ <ordering specification> ] 

<ordering specification> ::= ASC | DESC 



 
 
  

Daffodil DB          168 
 

Sort specification list: 

Sort Specification list consist of the column names by which the ordering needs to be done. 

Example 

select StudentId, RollNumber  from  Student Order By  RollNumber   

Result 

StudentID RollNumber 

1 1001 
2 1002 
3 1003 
4 1004 

The result shows first four records satisfying above query. 

The above query, being the simplest one, lists the ID and Roll Numbers of the Students from the 
STUDENT table. The result will be sorted by Roll Number in the Ascending order, by default. 

Select StudentId, StudentName, 

RollNumber   from  Student 

Where StudentName like ’Ca%’ 

Order By  RollNumber DESC, StudentID 

Result 

StudentID StudentName RollNumber 

3 Cathe 1003 

1 Catherine 1001 

This query lists the ID, Name and RollNumber of the students whose name starts with ‘Ca’ . The 
list is sorted by the RollNumber field in the Descending order and in case of duplicate records in 
the RollNumber field; the duplicate rows are sorted in the Ascending order according to StudentId 
field. 



 
 
  

Daffodil DB          169 
 

ALIAS SUPPORT 
Alias Support is extended in the queries with the use of ‘AS’ . In a select expression, AS is used to 
assign an alias to the column name in the select list and table name in the from clause. 

Syntax 

<as clause> ::= [ AS ] <column name>    

Example 

select TeacherName, DateOfJoining, DateOfBirth as DOB from Teacher 

Result 

TeacherName DateOfJoining DOB 

Mr. Agregado 1996-04-17 1965-04-10 
Mr. Brumfield 1997-07-01 1966-11-27 
Ms. McKelvey 1998-09-25 1968-01-07 
Mr. Everett 1998-10-25 1968-01-17 

The above query sorts the list of Teachers by their DateOfBirth, selecting the Name of the 
Teacher, his/her Date of joining and Date of Birth. The DateOfBirth is aliased as DOB which is 
then used in the Order By clause. 

select  a.EmployeeID  as EmployeeID,  a.DepartName as Department, b.PostName  

from  Teacher as a, Post as b  

where a.PostID = b.PostID  

Result 

EmployeeID Department PostName 

1 English Principal 
2 Science Vice Principal 
3 Science Teacher 
4 Math Teacher 
5 Computer Teacher 
6 English Teacher 
7 Social Studies Teacher 
8 Biology Teacher 

This query clearly shows the aliasing in the select statement as well as from clause. 



 
 
  

Daffodil DB          170 
 

Comments Support 
Daffodil DB supports Comments in SQL queries.  

Syntax 

<comment> ::= <simple comment> | <bracketed comment> 

 

<simple comment> ::=  <simple comment introducer> [ <comment character>... ] <newline> 

 

<simple comment introducer> ::= <minus sign><minus sign>[<minus sign>...] 

 

<bracketed comment> ::= <bracketed comment introducer> <bracketed comment contents> 
<bracketed comment terminator> 

 

<bracketed comment introducer> ::= /* 

 

<bracketed comment terminator> ::= */ 

 

<bracketed comment contents> ::= 

[ { <comment character> | <separator> }... ] 

 

<comment character> ::= <nonquote character> | <quote> 

 

<newline> ::= ; 

 



 
 
  

Daffodil DB          171 
 

Two types of comment are supported in Daffodil DB. 

1) Simple Comment 

2) Bracketed Comment 

 

Simple Comment: A Simple Comment starts with 2 <minus sign> (--) and terminated with a 
semicolon (;). Examples of Simple Comments are  

Select * From   --This is a Select Query Selecting All Records of a Table Student;  Student 

Delete From   –Name of table;   Student where   –Condition for Delete;   Studentid<10 

 

Bracketed Comment: A Bracketed Comment starts with a <solidus> (/) immediately followed by a 
<asterisk> (*) i.e. /* and terminated with <asterisk> immediately followed by a <solidus> i.e. */. 
Examples of Bracketed comments are 

 

Select * From  /* This is a Select Query Selecting  

All Records of a Table Student */  Student 

 

Update Student /* Set name of student to John where Studentid is 10 */ Set StudentName = ‘John’  
where Studentid =10  



 
 
  

Daffodil DB          172 
 

Call Statement 

 

Call statement is used to invoke the SQL stored procedure.  

Syntax 

<call statement> ::= CALL <routine invocation> 

<routine invocation> ::= <routine name> <SQL argument list> 

<SQL argument list> ::= 

<left paren> [ <SQL argument> [ { <comma> <SQL argument> }... ] ] <right paren> 

SQL Argument 

SQL Argument is any valid SQL Expression. 

Call Statement will automatically search for the matching SQL stored procedure. Matching 
stored procedure means the procedure that has the same name and matching <SQL argument list>. 

Example 

This is an example of CALL statement to execute the previously defined SQL stored procedures. 

CALL Student_row_insert (11,’john’,111,’m’,’xyz’,’24245’,1)CALL Modify_Teacher_Salary 
(1,12000)CALL Student_Mark_InOut_Proc (5) 



 
 
  

Daffodil DB          173 
 

Session and Transaction Control Statements 

Set Transaction Statement  

This statement is used to define the Isolation Level.  

Syntax 

SET <transaction characteristics><transaction characteristics>::= TRANSACTION <transaction 
mode> [ { <comma> <transaction mode> }... ]} 

Transaction Mode 

Transaction mode can be Read Only and Read Write. In Read Only, we can only perform DQL 
(Data Query Language) Statements. In Read Write Mode, we can perform all the SQL Statements. 
A Transaction mode can also be used to set the various isolation levels like Read Committed, 
Read Uncommitted etc. 

Example  

Set Transaction Isolation Level READ COMMITTED  

In the above example, we set the Transaction Isolation Level to READ COMMITTED. 

Savepoint Statement 

This statement is used to set a save point, or marker, within a transaction. 

Syntax 

SAVEPOINT <savepoint-name> 

The Savepoint defines a location to which a transaction can return if part of the transaction is 
conditionally cancelled. If a transaction is rolled back to a savepoint, it must proceed to 
completion, or it must be cancelled altogether (by rolling the transaction back to its beginning). To 
cancel an entire transaction, use the form: 

ROLLBACK  

All the statements or procedures of the transaction are undone until last commit. 

Commit Statement 

The COMMIT statement successfully terminates a Daffodil DB transaction. 

Syntax 

The COMMIT statement is used to end the current transaction and make permanent all changes 
performed in the transaction. The COMMIT statement successfully finishes a transaction. This 
statement also erases all savepoints in the transaction. 

You cannot roll back a transaction after a COMMIT statement is issued because the data 
modifications have been made a permanent part of the database. 



 
 
  

Daffodil DB          174 
 

Rollback Statement 

Rollback statement will undo all the changes made since the last completed Transaction i.e. since 
the last COMMIT or ROLLBACK statement called.  

 

Syntax 

ROLLBACK [WORK] [ TO SAVEPOINT <Savepoint-Name> ] 

Rollback erases all data modifications made since the start of the transaction or to a Save point. It 
also frees resources held by the transaction. ROLLBACK without a Savepoint_name rolls back to 
the beginning of the transaction. A transaction cannot be rolled back after a COMMIT statement is 
executed. 

Example  

ROLLBACK to SAVEPOINT save_point1 

Above example rollbacks all changes or data modifications made since the start of the transaction 
to a save point name save_point1. 

ROLLBACK WORK 

Above example rollbacks all changes to the beginning of the transaction. 

Set Session Authorization 

This statement is used to change the current user in session to another user. 

Syntax 

<set session user identifier statement>::= SET SESSION AUTHORIZATION <value 
specification><value specification> ::= <literal> | <general value specification> 

Literal  

Literal can be only Character String Literal. No other types are allowed  

General Value Specification 

Value specification can only return a valid user-name or a valid roll-name,    if user-name or roll-
name does not exist in database then error is thrown. If we specify the values as current Date, 
current Database, current user and current time, then the function will throw an exception. Specify 
one or more values, host parameters, or SQL parameters. 

Example 

SET SESSION AUTHORIZATION administrator 

Suppose a user ‘daffodil’  is connected to the database, after executing the above statement current 
user will change to ‘administrator’ . 



 
 
  

Daffodil DB          175 
 

Set Session Characteristics Statement 

The SET SESSION CHARACTERISTICS statement is used to set one or more characteristics for 
the current SQL session. Characteristics include transaction modes read only, read write and 
isolation levels. 

Syntax  

<set session characteristics statement>::=SET SESSION CHARACTERISTICS AS <session 
characteristiclist><session characteristic list> ::=<session characteristic> [ { <comma> <session 
characteristic> }... ]<session characteristic> ::=<transaction characteristics><transaction 
characteristics> ::=  TRANSACTION <transaction mode> [ {<comma> <transaction mode> }... ] 

 

 

Session Characteristic List 

Session Characteristics List is a collection of session characteristics separated by commas. Session 
Characteristics is in turn a transaction characteristic.  

Transaction List  

Transaction List is a collection of transaction modes separated by commas. 

Transaction Mode  

A Transaction mode can be Read Only and Read Write. In Read Only, we can only perform DQL 
Statements. In Read Write Mode, we can perform all the SQL Statements. A Transaction mode 
can also be used to set the various isolation levels.  

Example 

SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL 
SERIALIZABLE, READ ONLY  

After execution of this statement the isolation level of session is set to SERIALIZABLE and mode 
is set to READ ONLY. 



 
 
  

Daffodil DB          176 
 

SQL Security and Privileges 

 
Schemas are used for controlling security in Daffodil DB. When creating a user, they do not have 
any access privileges to schemas of other users or other data objects within the database. The 
Daffodil DB RDBMS only permits the schema or database owner to grant privileges on the data 
objects within the schema.  

Users can grant privileges to the following data objects in the schema: 

• Tables 

• Columns 

• Roles 

• SQL Procedures 

• Domain 

The following table describes the privileges that users can grant to other users for tables and 
columns.  

DELETE Allows a user to delete rows from tables within 
the schema 

INSERT Allows a user to insert rows of data into tables 
within the schema 

REFERENCES Allows a user to set up references to primary keys 
within the schema 

SELECT Allows a user to select rows from tables within the 
schema 

TRIGGER Allows a user to create triggers on tables within 
the schema 

UPDATE Allows a user to update rows in tables within the 
schema 

 

Predefined User 

Daffodil DB provides you with a predefined user (default user). User name and password of 
default user are – 

User Name – PUBLIC  

Password – PUBLIC  

Default user i.e. “ PUBLIC”  can perform following operation with the database. 
  Connect to the database      
  Access the objects having rights to PUBLIC. 
 

 

  



 
 
  

Daffodil DB          177 
 

Granting and Revoking Privileges to Users 

When you initially create a Daffodil DB database, it automatically creates a default user with a 
password “ PUBLIC” . The user created owns the default schema USER. For security reasons, 
Daffodil DB does not recommend using this schema to store sensitive data. 

Like any other user, default user must be granted the appropriate privileges to access data objects 
in schemas owned by other users. Current user will own any new schema that is created unless 
otherwise specified while creating the schema. New users are then able to create their own new 
schema and grant appropriate privileges on objects in the schema that they own. All new users 
must be granted privileges to access the objects in the USER schema, if this is required. To grant 
the ability for a user to pass a privilege on to other users, you must specify the optional WITH 
GRANT OPTION qualifier when granting the privilege. 

Grant Statement 

Use the GRANT statement to grant privileges on a data object.  

Syntax 

GRANT <privileges> TO <grantee> [ { <comma> <grantee> }... ] [ WITH GRANT OPTION ] [ 
GRANTED BY <grantor> ] 

<Privilege> ::= <object privileges> ON <object name> 

<object privileges> ::= ALL PRIVILEGES | <action> [ { <comma> <action> }... ] 

<object name> ::= [ TABLE ] <table name> | DOMAIN <domain name> | <specific routine 
designator> 

<action>:: =  

SELECT 

| SELECT <left paren> <privilege column list> <right paren> 

| DELETE 

| INSERT [ <left paren> <privilege column list> <right paren> ] 

| UPDATE [ <left paren> <privilege column list> <right paren> ] 

| REFERENCES [ <left paren> <privilege column list> <right paren> ] 

| USAGE 

| TRIGGER 

| EXECUTE 

<grantor> ::= CURRENT_USER | CURRENT_ROLE 

<grantee> ::= PUBLIC | <authorization identifier> 



 
 
  

Daffodil DB          178 
 

• If you do not include one or more of these privileges in the GRANT statement, an error 
will be raised. 

• If the optional “ column-names”  are not specified for the SELECT, INSERT, UPDATE, 
REFERENCES and TRIGGER privileges, the GRANT is a table-level grant that allows 
access to all present and future columns of the table. 

• If you execute a GRANT statement that contains privileges that you don’ t have or for 
which you do not have the right to grant, then an error occurs. 

• You may only grant the EXECUTE privilege on an SQL Procedure. 

• If you do not specify WITH GRANT OPTION, the user cannot pass the same privilege on 
to other users. However, if you do specify WITH GRANT OPTION, you have given the 
user permission to pass on the privilege to other users. 

• Granting a privilege to PUBLIC grants the privilege to all present and future users. 
PUBLIC is a keyword, representing all users in the database. 

• If you grant a privilege twice, and one of the times—either first or second—you granted 
the optional WITH GRANT OPTION and the other time you granted it without the grant 
option, the user will retain the grant option. 

• If GRANTED BY <grantor> is not specified, then the grantor is the CURRENT_USER. 

Example 1 

The following statement grants SELECT privilege on the TEACHER table to the user USER1. 

GRANT SELECT ON teacher TO user1 

Example 2 

Following GRANT statement allows the user ‘USER2’  to delete, insert and update rows from the 
TEACHER table; it also allows this user to grant same privileges to others. 

GRANT DELETE,INSERT,UPDATE ON teacher TO user2 WITH GRANT OPTION 

Example 3 

Following GRANT statement allows the user ‘USER3’  to have ALL PRIVILEGES on the table 
TEACHER. However, the user ‘USER3’  will only be granted privileges that the user granting 
privileges has the rights to grant.  

For example, if a user granting the privileges does not have right to grant DELETE privileges, the 
USER3 will not have the delete privilege. 

GRANT ALL PRIVILEGES ON teacher TO user3 

Example 4 

Following GRANT statement allows the user ‘USER2’  to create trigger on TEACHER table; it 
also allows this user to grant same privileges to others. 

GRANT TRIGGER ON teacher TO user2 WITH GRANT OPTION 



 
 
  

Daffodil DB          179 
 

Example 5 

Following GRANT statement allows the user ‘USER2’  to use TEACHER table as referenced table; 
it also allows this user to grant same privileges to others. 

GRANT REFERENCES ON teacher TO user2 WITH GRANT OPTION 

Example 6 

Following GRANT statement allows the users ‘USER2’  and ‘USER3’  to use intdom domain as a 
data type in any object where domain can be used. 

GRANT USAGE ON intdom TO user2, user3 

Example 7 

Following GRANT statement allows the users ‘USER1’  and ‘USER3’  to execute procedure 
Modify_Teacher_Salary using call statement. 

GRANT EXECUTE ON specific procedure Modify_Teacher_Salary TO user1, user3 

Example 8 

The following statement grants SELECT privileges on the ‘employeeId’  column and INSERT 
privileges on the ‘postId’  column of TEACHER table to the user USER3. 

GRANT SELECT (EmployeeId), INSERT (PostId) ON teacher TO user3 

Note: In above examples give different-different privileges on different-different objects to 
existing users. Roles can also be assigned privileges for different-different objects in the place of 
users. 

Revoke Statement 

Revoke Statement is used to revoke a role or a privilege from a user. 

Syntax 

REVOKE [GRANT OPTION FOR] <privileges> FROM 

    <grantee> [ { <comma> <grantee> }... ] 

  [GRANTED BY <grantor>] 

 <drop behavior> 

<drop behavior>:  CASCADE | RESTRICT 

To revoke a role from a user, use the SQL command, REVOKE. This command revokes only the 
privileges that the specified <grantor> granted to the <grantee>. If another <grantor> granted 
the same privileges to the <grantee>, then the <grantee> will still have those privileges. 

Note: - The syntax rule for the REVOKE syntax is similar to the GRANT statement. The major 
difference is the additional RESTRICT or CASCADE keyword and the GRANT OPTION FOR 
clause. The following describes the optional clauses GRANT OPTION FOR and RESTRICT or 
CASCADE. 

You may only revoke privileges, which you have granted. 

 



 
 
  

Daffodil DB          180 
 

GRANT OPTION FOR 

If the optional GRANT OPTION FOR clause is used, the WITH GRANT OPTION right is 
revoked, but the actual privilege itself is not revoked then CASCADE and RESTRICT may be 
used in the same way as the normal REVOKE statement. 

RESTRICT | CASCADE 

If you specify the RESTRICT keyword, only privilege granted by you, will be revoked from the 
specified user. If the specified user had grant option and has granted the same privilege to other 
users, then there will be an error. If you specify CASCADE, only the privileges granted by you, 
will be revoked from the specified user or any other privileges dependent on your grant.  

Example 1 

Following statement revokes the SELECT privilege on the TEACHER table from the user USER1. 

REVOKE SELECT ON teacher FROM user1 restrict 

Example 2 

The following REVOKE statement removes ALL PRIVILEGES from the user, USER3 on the 
table TEACHER.  

REVOKE ALL PRIVILEGES ON teacher from user3 restrict 

Example 3 

The following REVOKE statement revokes the select privileges on column ‘EmployeeId’  and 
insert privileges on column ‘PostId’  on the TEACHER table from the user ‘User3’ .  

REVOKE SELECT (EmployeeId), INSERT (PostId) ON teacher from user3 restrict 

Example 4 

The following REVOKE statement revokes ‘grant option for’  ALL PRIVILEGES on the table 
TEACHER from the user ‘User3’ . After it user ‘User3’  could not grant any privileges on table 
TEACHER to any existing user/role. 

REVOKE GRANT OPTION FOR ALL PRIVILEGES ON teacher from user3 cascade 

CREATE ROLE  
 
Creates a role to which the privileges can be granted. 
 
Syntax 
 

CREATE ROLE <role_name> [WITH ADMIN <grantor>] 
   <grantor> ::= CURRENT_USER | CURRENT_ROLE  
 



 
 
  

Daffodil DB          181 
 

role_name 
 
It is the name of the role you are creating. For <role_name>, you can not use any existing user 
name and reserve words. 
 
WITH ADMIN_<grantor> 
 

• If WITH ADMIN <grantor> is not specified, then the grantor is the CURRENT_USER. 
• IF WITH ADMIN CURRENT_ROLE is specified, then the CURRENT_ROLE must not 

be NULL. 
 
Examples 

 
CREATE ROLE PRINCIPAL WITH ADMIN CURRENT_USER 
 
If current user is USER1, this will create a role called PRINCIPAL whose owner will be the user 
USER1. Privileges can now be granted to the role PRINCIPAL. The user USER1 can then grant 
this role PRINCIPAL to other users, or to other roles. Once the role is granted to the users or to 
other roles, these users and roles will have same level of privileges as was granted to the role 
PRINCIPAL. 
 
GRANT ROLE  
 
 Use GRANT ROLE statement to grant role to users or to other roles. 
 
Syntax 
 
GRANT <role_name> [{, <role_name>} … ] 
TO <grantee> [{ , <grantee>} …  ] 
[WITH ADMIN OPTION] 
[GRANTED BY <grantor>] 
<grantee> ::= PUBLIC | <authorization identifier> 
<grantor> = CURRENT_USER | CURRENT_ROLE  
 
role_name 
 
It is the name of the role to be granted. You may grant more than one role. 
 
Grantee 

• A role can be granted to users or to other roles. 
• You cannot grant a role to itself. 
• You cannot grant one role to a second role, and then attempt to grant the second role back 

to the first. For example, you can grant Role (A) to Role (B) or Role (B) to Role (A), but 
not both. Such a series of grants would result in a role grant cycle, which is not allowed. 

• Granting to PUBLIC grants the role to all present and future users and roles. 
 



 
 
  

Daffodil DB          182 
 

WITH ADMIN OPTION 
 

• If WITH ADMIN OPTION is specified, then the <grantee> can grant the role to other 
users or roles.  

 
• If you do not specify GRANTED BY <grantor>, then the grantor is the 

CURRENT_USER. 
• If you specify GRANTED BY CURRENT_ROLE, then the current role must not be 

NULL. 
 
Note: - To successfully execute this command, current users or roles must either be the role 
owner. Or, the <grantor>s must have admin option for every role that they grant. 
 
 
Examples 
 
GRANT PRINCIPAL TO USER2 
WITH ADMIN OPTION GRANTED BY CURRENT_USER 
 

If current user is USER1:- 
This will grant a role called PRINCIPAL (whose owner is the user USER1) to another user 
USER2 with admin option. The user USER2 can grant the role PRINCIPAL to other users, or to 
other roles, because the user USER2 has ‘with admin option’  for role PRINCIPAL.  
 
REVOKE  
 
Use REVOKE to revoke a role from a user or another role. This command revokes only the roles 
that the specified <grantor> granted to the <grantee>.  
 
Syntax 
 
REVOKE [ADMIN OPTION FOR] <role_name> [{, <role_name>} … ] 
FROM <grantee> [{, <grantee>} … ] 
[GRANTED BY <grantor>] 
<drop behavior> 
<drop behavior> ::= CASCADE | RESTRICT 
 
Please note that the syntax rule for the REVOKE syntax is similar to GRANT ROLE, except for 
the following. 
 
NOTE: You may only revoke roles, which you have granted. 
 
ADMIN OPTION FOR 
 
If ADMIN OPTION FOR is specified, then only the admin option for the role is revoked. 
 



 
 
  

Daffodil DB          183 
 

Drop behavior 
 

• If you specify the RESTRICT keyword, If the specified <grantee> had the ADMIN 
OPTION and  granted the same privilege to other users, then privileges will be retained 
otherwise revoked. 

• If you specify CASCADE, only the role granted by you, will be revoked from the 
specified <grantee> and any other roles dependent on your grant. 

Examples 
 
REVOKE PRINCIPAL from USER3 restrict 
 
If the current user is Marty: 
This will revoke a role called PRINCIPAL (whose owner is the user Marty) from USER3. 
 
REVOKE ADMIN OPTION FOR PRINCIPAL from USER2 granted by CURRENT_USER 
cascade 
 
If the current user is USER1: 
This will revoke a role called PRINCIPAL (whose owner is the user USER1) from USER2. 
 
 
DROP ROLE  
 
Used to drop an existing role. To successfully execute this command, the current user must be a 
user who is the owner of the role. 
 
Syntax 
 

DROP ROLE <role_name>  
 
Examples 
 

DROP ROLE URole  
 
If the current user is USER1: 
This will drop the role called URole whose owner is the USER1 (Role owner).   
 
NOTE: You may only drop roles, which you have created. 
  
SET ROLE  
 
Syntax 
 
SET ROLE <role_name> 
 | NONE 
 



 
 
  

Daffodil DB          184 
 

Usage Notes 
• To successfully execute this command, the current user must be the role owner, or a user 

granted to use this role. 
• This statement will set the current role for the current user to either the role specified or to 

the null value if NONE is specified. 

 

Example 1 

The following statement will set the role ‘Principal’  and after that only those schema objects could 
be accessed, for which the roles have been set for. 

SET ROLE PRINCIPAL 

Appendix 
1. Error Messages 

DSE0={0} 

DSE12=Access denied. Do not have ’CREATE or DROP’ permission.  

DSE14=An aggregate may not appear in the where clause unless it is in a subquery contained in a 
having clause or a SELECT list, and the being aggregated is an OUTER reference. 

DSE15=OLD and NEW alias name cannot be identical. 

 

DSE16=Function {0} not supported. 

DSE17=Ambiguous column name {0}. 

DSE22=Feature {0} not supported. 

DSE27=Insufficient privileges. 

DSE28=In auto commit mode. 

DSE35=Syntax error converting data type {0} to {1}. 

DSE40=Cannot concatenate character data type value {0} to byte data type value {1}. 

DSE85=Cannot call Statement.executeUpdate() with this query. 

DSE86=Cannot call Statement.executeQuery() with this query. 

DSE87=Syntax error converting data type {0} to {1}. 



 
 
  

Daffodil DB          185 
 

DSE103=Cannot concatenate date with date. 

DSE104=View or function {0} is not updatable because it contains aggregates. 

DSE105=Cannot execute query through execute query method. 

DSE146=Cannot read from the input stream. 

DSE191=Cannot be dropped as this procedure is being referred by some other procedure. 

DSE198=Cannot define the SQL data access as no-SQL. 

DSE200=A routine definition can have at most one <deterministic characteristic>. 

DSE201=A routine definition can have at most one <SQL-data access indication>. 

DSE202=A routine definition can have at most one <dynamic result sets characteristic>. 

DSE203=A routine definition can have at most one <specific name>. 

DSE205=A routine definition can have at most one <language clause>. 

DSE206=A routine definition can have at most one <parameter style clause>. 

DSE210=Cannot specify <parameter mode> in function definition. 

DSE212=Cannot use name and index in same statement. 

DSE213=Cardinality cannot be greater than one. 

DSE214=Cardinality does not match. 

DSE224=Catalog name in constraint definition does not match catalog of table defintion. 

DSE225=Catalog name can not be changed as table name or schema name does not exist. 

DSE226=Catalog name in schema definition and table definition for table {0} does not match. 

DSE227=Catalog name in the view definition is not matching with that of schema definition. 

DSE228=Catalog name of the trigger definition is not matching with that of schema definition. 

DSE231=Character string type can not be null. 

DSE232=Characteristics cannot be null. 

DSE235=Check constraint definition does not exist. 



 
 
  

Daffodil DB          186 
 

DSE236=Check option cannot be specified with recursive view type. 

DSE237=Check the code. 

DSE239=Check datatype called from Boolean value expression and Boolean value expression. 

DSE242=Callable statements are not supported. 

DSE243=Collate clause can not specified for non-character column type. 

DSE250=Column names in each table must be unique. Column name {0} in table {1} is specified 
more than once. 

DSE251=ALTER TABLE DROP COLUMN statement failed because column {0} does not exist in 
table {1}. 

DSE252=ALTER TABLE DROP COLUMN statement failed because {0} is the only data column in 
table {1}. A table must have at least one data column. 

DSE255=Column name {0} does not exist in target table {1}. 

DSE256=Invalid column name(s) {0}. 

DSE260=Invalid column name(s) {0} in Group by clause. 

DSE262=Column type not set. 

DSE264=Column descriptor does not exist. TABLE CATALOG {0} TABLE SCHEMA {1} TABLE 
NAME {2} COLUMN NAME {3} PRIVILEGE TYPE {4}. 

DSE265=Table descriptor does not exist. TABLE CATALOG {0} TABLE SCHEMA {1} TABLE 
NAME {2} PRIVILEGE TYPE {3}. 

DSE266=Column {0} does not exist in table {1}. 

DSE267=Column name {0} passed with value {1}. 

DSE269=Column name specified in columnlist is not present. 

DSE270=Columns corresponding to the constraint not found {0}. 

DSE272=Cannot use duplicate column names in index key list. Column name {0} listed more than 
once. 

DSE273=Columns specified in trigger column list are not unique. 

DSE274=Trigger {0} uses the invalid column/columns {1} in trigger column list. 



 
 
  

Daffodil DB          187 
 

DSE275=Commit action can not be specified with type {0}. 

DSE276=Commit is not allowed with read uncommitted level. 

DSE279=Connection already closed. 

DSE286={0} is not a constraint. 

DSE287=Non deferrable constraint. 

DSE288=ALTER TABLE DROP CONSTRAINT statement failed because constraint {0} is being 
referenced foreign key constraint {1}. 

DSE289=Unique constraint referred by the referencing column should not be deferrable. 

DSE294=Current row is not valid. 

DSE295=Data cannot be loaded. 

DSE297=Invalid data. 

DSE301=Data not loaded in the {0} descriptor. 

DSE306=Data not valid. 

DSE310=Data type descriptor does not have any rows. 

DSE316=Database {0} does not exist. 

DSE314=Database {0} already exists. 

DSE319=Data type should be of character type in case collate clause is specified. 

DSE323=Default value of the domain descriptor is not set. 

DSE324=Definition of rule {0} is not found. 

DSE325=Degree can not be greater than one. 

DSE326=Degree is exceeding to one in between predicate. 

DSE330=Deletion is not allowed with read uncommitted level. 

DSE334=Divide by zero error encountered. 

DSE336=Domain constraint descriptor not loaded. 

DSE337=Domain definition does not exist. 



 
 
  

Daffodil DB          188 
 

DSE338=Domain descriptor not set. 

DSE339=Domainconstraint does not exist. Catalog: {0} schema: {1} constraint: {2}. 

DSE340=Do not have permission to {0} the table {1}. 

DSE342=Do not have any permission to SELECT a row. 

DSE355=Error while getting the connection. 

DSE356=Error in reading the stream. 

DSE358=Exception. 

DSE382=INSERT statement conflicted with FOREIGN KEY constraint {0}. The conflict occurred in 
table {1}. 

DSE390=Global session not set. 

DSE393=exception not handled correctly. 

out-of-range datetime value. 

DSE396={0} specified should be between {1} and {2}. 

DSE401=Illegal call. 

DSE402=Illegal call for condition: {0}. 

DSE408=Illegal condition for join retriever optimal {0}. 

DSE410=Database is incompatible, might be created in higher version. 

DSE411=Illegal method call. 

DSE412=Illegal multiplier passed {0}. 

DSE413=Illegal timestamp denometer {0}. 

DSE415=Invalid fetch direction. In case of type forward, only fetch forward is valid direction. 

DSE416=Incompatible type {0}. 

DSE419=Illegal/invalid argument passed in function {0}. 

DSE478=Index cannot be maintained on column of type {0}. 

DSE479=Index passed [{0}] must be >0 && <= {1}. 



 
 
  

Daffodil DB          189 
 

DSE482=Cannot find Index name {0}. 

DSE483=Cannot defer a constraint that is not deferrable. 

DSE484=Insert failed. 

DSE487=Insertion is not allowed with read uncommitted level. 

DSE489=Integrity constraint violation. 

DSE492=Internal error data type descriptor is not set or is null. 

DSE493=Internal error: columndescriptor not set. 

DSE494=Internal exception: table descriptor not initialized. 

DSE495=Internal exception: schema descriptor not set. 

DSE496=Internal exception: column descriptor not set. 

DSE504=Invalid column. 

DSE505=Invalid column index: {0}. 

DSE508=Invalid column name {0}. 

DSE511=Invalid concurrency {0}. 

DSE513=Invalid data passed. 

DSE514=Invalid data type {0}. 

DSE515=Cannot find data type/domain {0}. 

DSE517=Invalid default option <{0}> {1}. 

DSE518=Invalid fetch size. 

DSE520=Invalid grantor. 

DSE523=Invalid log file. 

DSE524=Invalid logging level. 

DSE525=Invalid method call. 

DSE526=Invalid no of columns in function. 



 
 
  

Daffodil DB          190 
 

DSE527=Invalid number {0}. 

DSE528=Invalid operator {0}. 

DSE529=Invalid operator (-) for string manipulation. 

DSE530=Invalid quantifier {0}. 

DSE531=Invalid query. 

DSE532=Invalid query to execute. 

DSE533=Invalid query to execute update method. 

DSE536=Invalid result from server. 

DSE537=Syntax error converting datetime from character string. 

DSE538=Invalid URL. 

DSE540=This feature is not supported in ONE$DB. 

DSE541=Invalid value for fetch direction: {0}. 

DSE542=Invalid value for holdability {0}. 

DSE543=Invalid value for isolation level {0}. 

DSE545=Invalid value passed for maxrows {0}. 

DSE548=Iterator is not at valid row. 

DSE550=Key can not be null. 

DSE552=Key does not exist {0}. 

DSE554=Key passed is null. 

DSE555=Keys cannot be null key1 {0} key2 {1}. 

DSE558=Length cannot be null. 

DSE562=List is empty. 

DSE563=Locator not allowed in procedures. 

DSE565={0} not supported. 



 
 
  

Daffodil DB          191 
 

DSE567=Method can not be called with parameters. 

DSE715=Neither schema name nor authorization identifier specified. 

DSE716=NEW ROW alias cannot be specified with DELETE type of event. 

DSE717=NEW ROW cannot be specified without FOR EACH ROW. 

DSE718=NEW TABLE alias cannot be specified with DELETE type of event. 

DSE720=Next of {0} is null. 

DSE721=Column name not set 

DSE723=No data exists corresponding to the data. 

DSE725=No getter method called before this call. 

DSE728=Cannot find the procedure {0} which has {1} arguments. 

DSE729=Cannot drop the procedure {0}, because it does not exist. 

DSE731=The variable name {0} has already been declared. Variable names must be unique within a 
stored procedure. 

DSE732=No type available. 

DSE736=Not a select query. 

DSE737=Not a valid column. 

DSE738=Not a valid direction {0}. 

DSE740=Not a valid out parameter index {0} outparameters {1}. 

DSE749=ColumnNames are null. 

DSE750=Null not allowed in this column. 

DSE752=Number of columns in query expression and view column list are not equal. 

DSE753=Procedure parameters mismatch. 

DSE754=Number of values are not equal to number of columns 

DSE756=Object not convertible 

DSE759=Object privilege should be of usage type in this case 



 
 
  

Daffodil DB          192 
 

DSE773=The value you entered is not consistent with the data type or length of the column. 

DSE775=Old or old row, new or new row, old table, and new table shall be specified at most once each 
within the <old or new values alias list>. 

DSE776=Old row alias can not be specified with insert type of event. 

DSE777=Old row can not specified without for each row. 

DSE778=Old table alias can not be specified with insert type of event. 

DSE784=Parameter passed is {0}. 

DSE785=Parameters and values count does not match. 

DSE786=Parameters are null. 

DSE792=Parameterstyleclause cannot be specified in procedure statement. 

DSE798=Position must be greater then 0. 

DSE799=Precision {0} can not be greater maximum value {1}. 

DSE804=Problem while checking for index table. 

DSE806=Problem while creating the database. 

DSE808=Problem in getting retriever for table. 

DSE810=Problem in getting table {0}. 

DSE812=Problem in getting the constraints of the table. 

DSE813=Problem in run method of default option. 

DSE818=Put quotes arround the values passed. 

DSE819=Query not produced an update count. 

DSE820=Query not produced ResultSet. 

DSE822=Query expression not declared local temporary table. 

DSE823=Query expression can not have target specifications. 

DSE824=Query expression shall specify row type of element. 

DSE825=Query failed. 



 
 
  

Daffodil DB          193 
 

DSE828=Query is either null or empty. 

DSE832=Query time out must be greater than 0. value passed is {0}. 

DSE836=Range is exceeding {0} start position {1} is greater than length of blob {2}. 

DSE841=Record is not present. 

DSE848=Record number is exceeding the total number of records {0}. 

DSE849=Record number {0} passed is deleted. 

DSE851=Recursive shall be specified. 

DSE853=Referenceable view specification can not be specified with recursive. 

DSE857=Referential constraint definition does not exist. 

DSE861=Restrict called from {0}. 

DSE869=Result can be specified at most one time. 

DSE870=ResultSet not updateable. 

DSE871=ResultSet type is forward only. 

DSE874=Invalid role specification. 

DSE875=Role authorization descriptor does not exist. Role name: {0} grantee: {1}. 

DSE876=Role/user {0} already exists in database. 

DSE877=Rollback is not possible, not a valid session. 

DSE879=Row is locked by another user. 

DSE883=Rowset is read-only. 

DSE884=Rsb of rsbi {0}, record. 

DSE885=Rule name passed is {0}. 

DSE887=Runtime exception: table descriptor not set. 

DSE889=Save point {0} already exists. 

DSE890=Invalid save point. 



 
 
  

Daffodil DB          194 
 

DSE891=Scale {0} can not be greater maximum value {1}. 

DSE892=Scale {0} can not be greater precision {1}. 

DSE893={0} scale can not be negative. 

DSE895=Schema and catalog specified does not exist. 

DSE896=Schema {0} does not exist. 

DSE897=Schema in the constraint definition does not match schema of table. 

DSE902=Schema name does not match with that of table {0}. 

DSE903=Schema name does not match with that of view defintion. 

DSE904=Schema name not specified. 

DSE905=Schema name does not match with that of trigger defintion. 

DSE906=Schema name’s domain definition does not match. 

DSE907=Schema owned by {0} has not granted drop privilege to this user. 

DSE915=Session does not exist. 

DSE918={0} should contained either in aggregate function or group by columns. 

DSE920=Should specify parameter name. 

DSE925=Some problem. 

DSE928=Specific name is already present in the schema. 

DSE930=Specified table is not a base table {0}. 

DSE931=Splitindexandnonindexconditions called from betweenpredicate. 

DSE934=SQL invoked routines can only have execute privilege. 

DSE937=Start position {0} is greater than the length of blobclob {1}. 

DSE939=Start position {0} is greater than the length of blob {1}. 

DSE940=Statement is closed. 

DSE945=Sum or avg aggregate function can not accept character string as argument. 



 
 
  

Daffodil DB          195 
 

DSE946=Syntax error. 

DSE953=Systemfield {0} does not exist. 

DSE954=Ambiguous table name {0}. 

DSE955=Table cannot be a local temporary one. 

DSE956=Table definition does not contain column definitions. 

DSE957=Table definition does not contain table elements. 

DSE958=Table definition does not contain table content source. 

DSE959=Invalid object name {0}. 

DSE962=Table is not a base table. Alter table not allowed. 

DSE963=Table is of reference able type. 

DSE964=Table is referenced from the check constraints, can not be dropped. 

DSE970=Table name does not exist 

DSE972=Temporary table should have all privileges. 

DSE973=The data type should be of Character String type but is of {0}. 

DSE974=The data type does not require scale. 

DSE975=Length {0} of column {1} can not be less than 128 for default clause 

DSE976=Cannot find the index name {0} on table {1}. 

DSE977=The is no corresponding index columns. 

DSE978=The key is not present. 

DSE982=The key passed is null or invalid. 

DSE983=The length {0} can not be greater than valid length {1}. 

DSE985=The length {0} is greater than valid length {1}. 

DSE986=The list is empty. 

DSE987=The literal length {0} is greater than {1}. 



 
 
  

Daffodil DB          196 
 

DSE989=The precision {0} is greater than valid precision {1}. 

DSE991=The recordId {0} not an instance of query record. 

DSE992=The record identity {0} not an instance of query record. 

DSE994=The time precision {0} is greater than valid {1}. 

DSE998=View {0} does not exist. 

DSE999=There is no record corresponding to recordId {0}. 

DSE1010=Transformgroupspecification cannot be specified in procedure statement. 

DSE1012=You can specifiy trigger privilege only on base tables. 

DSE1013=Trigger definition does not exist. 

DSE1014=Trigger subject table is not a base table. 

DSE1017=Truncated length {0} is greater than length of blobclob {1}. 

DSE1018=Type {0}. 

DSE1019=Inappropriate type {0}. 

DSE1021=Type {0} not defined in database. 

DSE1022=Type not registered. 

DSE1024=mismatched type. 

DSE1025=Types of table does not match. 

DSE1026=Column {0} is not the same data type as referencing column {1}. 

DSE1029=Unable to get the authorization identifier. 

DSE1030=Unable to get the schema name. 

DSE1032=Violation of UNIQUE KEY constraint {0}. Cannot insert duplicate key in object {1}. 

DSE1036=Unsupported format. 

DSE1037=Update cascade failed. 

DSE1043=Update primary key returned by retriever cannot be null. 



 
 
  

Daffodil DB          197 
 

DSE1046=Usageprivilegedescriptor does not exist. Grantor: {0} grantee {1} OBJECT_CATALOG: 
{2} OBJECT_SCHEMA: {3} OBJECT_NAME {4} OBJECT_TYPE {5}. 

DSE1047=User cannot be blank or _SYSTEM. 

DSE1051=Value cannot be null. 

DSE1066=View column list must be specified with recursive view type. 

DSE1067=View definition does not exist. 

DSE1075=Year must be between 9999 and -4713. 

DSE1077=You cannot repeat a routine characteristic. 

DSE1081=Illegal argument exception. 

DSE1082=The column specified in view query is not valid. 

DSE1083=Column {0} not allowed as constraint column. Type is {1}. 

DSE1084=Cannot use connect in routine definition. 

DSE1086=There are no primary or candidate keys in the referenced table {0} that match the 
referencing column list in the foreign key {1}. 

DSE1087=The length of check clause {0} is greater than the permitted length {1}. 

DSE1088={0} is System Field; change the name of the column. 

DSE1090=Create View failed because no column name was specified for functional column. 

DSE1103=Length of escape character can not be greater than one. 

DSE1104=Recordsetbuffer {0} record buffer {1}. 

DSE1105={0} is not convertible in binary. 

DSE1107=Problem in getting view characteristic. 

DSE1108=Problem in getting column characteristidefc of table {0}. 

DSE1109=Problem in getting default clause for table {0}. 

DSE1110=Problem in getting unique constraint. 

DSE1111=Problem in getting check constraints. 



 
 
  

Daffodil DB          198 
 

DSE1112=Problem in getting trigger characteristics. 

DSE1122=Problem in checking for has deferred constraints. 

DSE1124=Update failed due to dataexception. 

DSE1126=Delete failed due to retrievalexception. 

DSE1128=Commit failed due to data exception. 

DSE1129=Perform failed due to data exception. 

DSE1130=Column {0} not found in characteristics of table {1}. 

DSE1131=Column index {0} not found in characteristics of table {1}. 

DSE1133={0} data type not supported. 

DSE1134=Dependent privilege descriptor still exist. 

DSE1135=There is already an object named {0} in the database. 

DSE1136=Column {0} already exists in the table {1}. 

DSE1137=There is already an object named {0} in the database. 

DSE1138={0} type table privilege already exists for grantor {1} grantee {2} table {3}. 

DSE1139={0} type column privilege already exists for grantor {1} grantee {2} table {3} column name 
{4}. 

DSE1141=Trigger with {0} name already exists. 

DSE1142=There is already an index on table {1} named {0}. 

DSE1143=Column {0} already exists for index {1} of table {2}. 

DSE1144={0} domain already exists. 

DSE1145=Domain constraint {0} already exists. 

DSE1146=Schema {0} already exists. 

DSE1147=Column {0} already exists for constraint {1}. 

DSE1148={0} type usage privilege already exists for GRANTOR {1} GRANTEE {2} object {3}. 

DSE1149={0} type routine privilege already exists for grantor {1} grantee {2} routine {3}. 



 
 
  

Daffodil DB          199 
 

DSE1151=Grantee {0} already exists for role {1}. 

DSE1152=Method specification already exists for SPECIFIC CATALOG {0} SPECIFIC SCHEMA 
{1} SPECIFIC NAME {2}. 

DSE1153=Number of values is not equal to number of parameters. 

DSE1157=Parameters not set properly or not required. 

DSE1160=Argument passing is not proper. 

DSE1164=Updation is not allowed with read uncommitted level. 

DSE1166=Passed object length {0} is more than {1}. 

DSE1167=Required object of {0} passed {1}. 

DSE1168=Property {0} of column index {1} contains invalid value {2}. 

DSE1171=No such privilege descriptor found to delete. 

DSE1172=Invalid privilege descriptor. 

DSE1173=Some dependent entry exist. 

DSE1174=Incorrect syntax at position {0} near {1}. 

DSE1175=Problem in adding column {0}. 

DSE1178=Time out {0}. 

DSE1179=Catalog name is not same in object name {0} and schema descriptor {1}. 

DSE1180=Schema and table descriptor both are set. 

DSE1181=Granted or revoked privilege {0} is not compatible with object. 

DSE1182=No action found in action list. 

DSE1183=Table descriptor is null. 

DSE1184=Access mode is read only. 

DSE1199=Constraint cannot be created as data exists in table. 

DSE1205=Cannot add multiple PRIMARY KEY constraints to table {0}. 

DSE1206=File growth can be from 10 - 100 only is ?. 



 
 
  

Daffodil DB          200 
 

DSE1207=Insufficient privileges to drop the database. 

DSE1208=Invalid username/password. 

DSE1209=Insufficient privileges. 

DSE1210=User {0} with password {1} does not exist. 

DSE1211=Table is locked by another user. 

DSE1214=Key is not valid. 

DSE1216=Invalid status{0}. 

DSE1219=Cannot insert in functional/aggregate columns. 

DSE1249=Not a select query. 

DSE1250=Cardinality for multiple rows is invalid. 

DSE1251={0} statement conflicted with CHECK constraint {1} defined as {2}. the conflict occurred 
in table {3}. 

DSE1252=Length of columns {0} not equal to length of REFERENCES {1}. 

DSE1254=Problem in firing replace event. 

DSE1255=Violation of PRIMARY KEY constraint {0}. Cannot insert duplicate key in object {1}. 

DSE1256=Insert error: column name or number of supplied VALUES does not match table definition. 

DSE1257=The name {0} is not permitted in this context. Only constants, expressions, or variables 
allowed here. Column names are not permitted. 

DSE1258=Type of join applied in the query is not valid. 

DSE1259=Some column has been updated with value not satisfying the query. 

DSE1260=Cursor [ {0} ] already created in the current SQL SESSION. 

DSE1261=Cursor {0} aready opened 

DSE1262=Column cannot be of reference type. 

DSE1263=Cannot UPDATE the CURSOR, CURSOR is not updatable. 

DSE1267=Cannot perform INSERT/UPDATE/DELETE directly in a VIEW. 



 
 
  

Daffodil DB          201 
 

DSE1269=Mismatch in length of columns and values. 

DSE1270=The query is not valid. 

DSE1271=The query does not support ORDER BY. 

DSE1272=Non-updatable type of column in where clause,cannot INSERT/UPDATE in this query. 

DSE1273=Value of some reference column not provided or invalid column in query. 

DSE1274=Problem in Execution of Trigger For Table {0} While Performing Action [{1}] due to {2}. 

DSE1275=Problem in Execution of Insert Statement for Table {0}. 

DSE1276=Problem in Execution of Update Statement for Table {0}. 

DSE1277=Problem in Execution of Delete Statement for Table {0}. 

DSE1278=Referenced Constraint Violation [RESTRICT] for Table = {0} . 

DSE1284=INSERT statement conflicted with FOREIGN KEY constraint {0} MATCH PARTIAL. 
Cannot update the NULL values in all referencing column(s). 

DSE1285=INSERT statement conflicted with FOREIGN KEY constraint {0} MATCH PARTIAL. 
Cannot insert the NULL values in all referencing column(s). 

DSE1286=DELETE statement conflicted with FOREIGN KEY constraint {0}. The conflict occurred 
in table {1}. 

DSE1287=Referenced constraint violation. 

DSE1288=UPDATE statement conflicted with UNIQUE KEY constraint {0}. The conflict occurred in 
table {1}. 

DSE1289=UPDATE statement conflicted with PRIMARY KEY constraint {0}. The conflict occurred 
in table {1}. 

DSE1290=UPDATE statement conflicted with FOREIGN KEY constraint {0}. The conflict occurred 
in table {1}. 

DSE1291=Cannot insert the value NULL into column {0}, table {1}; column does not allow nulls. 
INSERT failed. 

DSE1292=Cannot update the value NULL into column {0}, table {1}; column does not allow nulls. 
UPDATE failed. 

DSE1293=Table name does not exist in mapping. 



 
 
  

Daffodil DB          202 
 

DSE1294=TableDetails for table name {0} passed in event is not found. 

DSE1295=There are {0} columns in the INSERT statement than values specified in the values clause. 
the number of values in the VALUES clause must match the number of columns specified in the 
INSERT statement. 

DSE1300=Aggregate function cannot be used in the insert value. 

DSE1301=Select statement can yield only one row. 

DSE1303=Invalid column {0} has been used in trigger action for table {2}. 

DSE1304=Invalid column for trigger specified in the trigger statement. 

DSE1305=Primary or Unique column should be autoincremental. 

DSE1306=Cannot insert a record with HASRecord columnvalue equal to false. 

DSE1307=Target Specification cannot be null 

DSE1308=Invalid user {0} 

DSE1309=Invalid password 

DSE2001=Now we have to insert record. 

DSE2002=Key is not valid. 

DSE2003=Record number {0} passed is deleted. 

DSE2004=Record is not present. 

DSE2005=Get the record from this location {0}. 

DSE2006=Record is partial. 

DSE2007=Record number is exceeding the total number of records {0}. 

DSE2008=Key {0} value {1} pair not present. 

DSE2009=Duplicate keys are not allowed. 

DSE2010=Cluster is locked by another user. 

DSE2012=Database is locked by another user. 

DSE2013=Type {0}. 



 
 
  

Daffodil DB          203 
 

DSE2014=Column does not exist {0}. 

DSE2015=There is no default index on table {0}. 

DSE2016=Error while updating the indexinfortable {0}. 

DSE2017=Index {0} already exists for table {1}. 

DSE2018=Number of values are not equal to number of columns. 

DSE2019=Iterator is at invalid position,1 : after last , -1 : before first. 

DSE2023=Server is already closed {0} 

DSE2025={0}. 

DSE2027=Cannot add database with more than one file and numtifile support as FALSE. 

DSE2028=Length of new files :: {0} initial size :: {1} increment factor is not possible with the 
database files u r trying to ADD. 

DSE2029=Initial size must be greater than size of file exist. 

DSE2030=File size :: {0},initial size :: {1}, increment factor :: {2} not posssible. 

DSE2031=Page Size is invalid.Valid range is 4k-32k. 

DSE2032=Column not found : {0}. 

DSE2034=Table is in use : {0}. 

DSE2035=No index created in table : {0}. 

DSE2036=Index already exist. 

DSE2037=Table name found. 

DSE2038=Element is deleted. 

DSE2039=Node size should be greater than 2. 

DSE2040=Index table not initialized. 

DSE2041=NODE IS NONLEAF 

DSE2042=NO Valid Key In Node 



 
 
  

Daffodil DB          204 
 

DSE2043=POSITION PASSED IS GREATER THAN ELEMENT COUNT == POSITION {0} AND 
ELEMENT COUNT {1} 

DSE2044=SPLITTING WILL OCCUR NOW 

DSE2045=BTree Can’t Give Value Of This Column 

DSE2046=Database version is not Compatible 

DSE2047=Increament Factor can’t be negative 

DSE2048=Encryption key length can’t be greater than 256 

DSE2049=DatabaseName {0} contains illegal character. 

DSE2050=Dead Lock Detected. 

DSE2051=Either path specified for database or database name is too long which exceeds OS limits. 

DSE2052=Transaction is active - Unable to set isolation level - First commit or rollback. 

DSE2053=Cursor can not be declared without a procedure. 

DSE2054={0} is not supported in one dollar db. 

DSE3513=Type of iterator is not Updatable 

DSE3514=Invalid Column {0} for table {1} 

DSE3515=Column {0} Not Found in Mapping 

DSE3516=Table {0} Does Not Exist In Mapping 

DSE3517=Invalid Column {0} 

DSE3518=Position of Iterator Not Initialised 

DSE3519=Illegal Column Type 

DSE3520=Value Of COlumn {0} Not Found in All Iterators 

DSE3521=View Tables from SQl Hierarchy does not match fully with the Plan Hierarchy 

DSE3522=Type Of Iterator {0} is not initialized 

DSE3523=Illegal Call to Iterator 

DSE3524=Clone not supported. 



 
 
  

Daffodil DB          205 
 

DSE3526=Table {0} does not lie in plan hierarchy. 

DSE3527=Cost not caculated for Condition {0}. 

DSE3528= ? is not allowed in Order BY and Group By Clause 

DSE3529=Either of joinlevelorder {0} and sIngletablelevelorder {1} should present. 

DSE3530=Condition {0} not solvable on any plan. 

DSE3531=Cost not calculated for this plan. 

DSE3532=Listener is not supported in case of set operator and subquery. 

DSE3533=Columnnames specified in from sub query and derived column list are not equal in length. 

DSE3534=Alias name should be specified with aggregate/expressional or scalar functional columns. 

DSE3535=Duplicate columns specified in from subQuery or view. 

DSE3536=Aggregate columns cannot be present in onCondition. 

DSE3537=Relation {0} does not belong to any plans. 

DSE3538=Condition {0} can not be shifted to single table level. 

DSE3539=Wrong event type {0} passed. 

DSE3540=HasRecord column cannot be used in select list when group by is present. 

DSE3541=A column has been specified more than once in the order by list. Columns in the order by 
list must be unique. 

DSE3542=Ambiguous column naming in select list. 

DSE3543=ORDER BY items must appear in the select list if the statement contains a UNION 
operator. 

DSE3544=Order Column {0} not present in selectList of query involving set operator. 

DSE3545=The ORDER BY position number {0} is out of range of the number of items in the select 
list. 

DSE3546=HasRecord Column contains invalid table name {0}. 

DSE3547=Condition {0} Execution Plan is not initialised. 

DSE3548=Columns and their order should be equal in length. 



 
 
  

Daffodil DB          206 
 

DSE3549=Data type and size is not initialized for scalar function. 

DSE3550=? is not allowed in expression in selectlist 

DSE3551=Aggregate COlumns cacnot be present for insertion in insert statement. 

DSE3552=Invalid Count value inside Top funtion. 

DSE3553=Iterator is at Invalid status. 

DSE3554=Child length can not be more than {0}. 

DSE3555=Reference {0} Value is not found. 

DSE3556=Execution Plan not initialized for table {0}. 

DSE3557=Column {0} does not exist in columncharacteristics of table {1}. 

DSE3558=Columns present in Comparison Predicate is Not Equal to 2. 

DSE3559=COlumns present in Comparison Predicate is Null. 

DSE3560=Type of Aggregate function is not initialised. 

DSE3561=Aggregate Function Quantifier type is not initialised. 

DSE3562=References and Values passed are not equal in length. 

DSE3563=Reference {0} not found in {1}. 

DSE3564=Mapping is not proper intialized. 

DSE3565=Inappropriate type in {0} 

DSE3566=Having clause can not be given without any aggregate columns or group by 

DSE3570=Invalid data type {0}. 

DSE3571=Collator of column {0} and column {1} does not match, hence we cannot compare 

DSE3572=No Proper Comparator...data type 1 {0} data type 2 {1} 

DSE3573=No value found for Parameter Name {0} 

DSE3574=All column selected. 

DSE3575=InComparable DataType {0} 



 
 
  

Daffodil DB          207 
 

DSE3576=Column {0} used in NATURAL join cannot have qualifier 

DSE3577=CROSS JOIN IS ONLY POSSIBLE 

DSE3802=Not found. 

DSE3804=Npe from variable column. 

DSE4104=Error converting data type varchar to float. 

DSE4106=Cannot insert in {0} data type value. 

DSE4107=Invalid data type {0} is passed for argument {1} in function {2}. 

DSE4108=Invalid data type {0} is passed in function {1}. 

DSE4109=Invalid operator for data type. operator EQUALS minus, type EQUALS {0}. 

DSE4111=The {0} aggregate operation cannot take a {1} data type as an argument. 

DSE4112=Syntax error converting the {0} value {1} to a column of data type {2}. 

DSE4113=Datatype has been set to {0} type for decimal value. 

DSE4114=The BLOB,CLOB data types cannot be compared or sorted, except when using is null 
operator. 

DSE4115=Invalid column name {0}. 

DSE4116=Iterator not alligned to any valid location. (First call beforefirst() or first()). 

DSE4117=Iterator not alligned to any valid location. (First call afterlast() or last()). 

DSE4118=Object do not belong to supported datatypes. 

DSE4119=The {0} requires one argument. 

DSE4120=Object is an instance of ignorevalue. 

DSE4121=Syntax error converting the {0} value {1} to a column of data type {2} and value {3}. 

DSE4122=Cannot perform an aggregate function on an expression containing an aggregate or a 
subquery. 

DSE4123=Cannot Move to the key = {0} 

DSE4124=Iterator is not Initialized. 



 
 
  

Daffodil DB          208 
 

DSE4125=Column Not Found. 

DSE4126=Method not supported. 

DSE4127=There are no Childs for Class -> {0}. 

DSE5001=User Defined Function {0} not supported 

DSE5002=Invalid Grantee in Grant/Revoke Statement 

DSE5003=Invalid Event (Listener fired with SELECT Type Event with Operation Type update) 

DSE5004=Invalid Operation Type in Event 

DSE5005=Can’t specify autoIncrement for more than one column 

DSE5006=Can’t specify default option for autoIncrement column 

DSE5007=Invalid data type for autoIncrement 

DSE5008=There are no primary or candidate keys in the referenced table {0} that match the 
referencing column list in the foreign key {1}. 

DSE5009=No primary or unique constraint present 

DSE5010=Schema contains some Database Objects i.e. tables, views, Domains, Routines, Triggers etc. 
Can not be dropped 

DSE5011=Invalid user name {0} 

DSE5012=Cannot have more than one null call clause 

DSE5013=Cannot have more than one transformgroupspecification 

DSE5014=Routines does not support multiple privileges 

DSE5015=Not a valid view both materialized and INTO tablename should be specified 

DSE5016=Invalid catalog name for table 

DSE5017=Datatypedescriptor and columns table result mismatch 

DSE5018=Contains colunms refering domain 

DSE5019=Current user is not authorized to drop routine 

DSE5020=Record to be deleted not present 



 
 
  

Daffodil DB          209 
 

DSE5021=Language other than SQL is not supported 

DSE5022=Null-Call clause shall not be specified in case of SQL invoked procedures 

DSE5023=No owner exist for Schema {0} 

DSE5024=Procedure Exist for same name and same number of parameters 

DSE5025=Catalog/Schema of routine name and specific name should be same 

DSE5026={0} has no references rights on table {1} 

DSE5027=Result Set is Closed 

DSE5028=View {0} is not a materializedview. 

DSE5029=Problem in case of delete event on RecordSetBufer {0}. 

DSE5030=Problem in case of insert event on RecordSetBufer {0}. 

DSE5031=Insert not allowed for query {0}. 

DSE5032=Error Occured while setting values for Record {0}. 

DSE5034=Column {0} is not updatable in query {1}. 

DSE5036=There is already one record in update state. 

DSE5037=Deleterow cannot be called for record yet to be inserted. 

DSE5038=Loadrecordforidentity cannot be called for record yet to be inserted. 

DSE5040=Ignore Values cannot be passed in this sequence for client parameters. 

DSE5041=Number of Parameter Infos for client parameters {0} are more than parameters in query 
{1}. 

DSE5042=Autonumber value cannot exceed {0}. 

DSE5045=Invalid event Type {0}. 

DSE5046=Role Dependency graph is not initialized properly. 

DSE5047=Privilege Dependency graph is not initialized properly. 

DSE5101=Cannot drop view {0}, because this view is a materailized view. 

DSE5102=Cannot drop materailized view {0}, because this view is not a materailized view. 



 
 
  

Daffodil DB          210 
 

DSE5502=Invalid database name {0}. 

DSE5503=You can not change the ISOLATION LEVEL. 

DSE5504=SEQUENCE {0}.NEXTVAL exceeds maxvalue and cannot be instantiated. 

DSE5505=SEQUENCE {0}.NEXTVAL goes below minvalue and cannot be instantiated. 

DSE5506=Sequence already exists {0}. 

DSE5507=Duplicate or conflicting {0} specifications. 

DSE5508=Increment must be a non-zero integer. 

DSE5509=Minvalue cannot be less than {0}. 

DSE5510=MAXVALUE Can not be greater than {0} 

DSE5511=Order not Supported 

DSE5512=MINVALUE must be less than MAXVALUE 

DSE5513=START WITH should lie between MINVALUE and MAXVALUE 

DSE5514=Absoulte of the INCREMENT value must be less than or equal to MAXVALUE minus 
MINVALUE and Should not be ’’0’’ 

DSE5515=MAXVALUE cannot be made to be less than the current value 

DSE5516=Sequence {0} does not exist 

DSE5517=MINVALUE cannot be made greater than the current value 

DSE5518=Couldn’t Move to Keys Specified. 

DSE5519=Database {0} already connected. 

DSE5520=Date {0} should lie between {1} and {2}. 

DSE5521=Pointer is not set after referesh. 

DSE5522=Database is in use. 

DSE5523=Cannot create directory on specified path. 

DSE5524=Remove ChildServerSession. 

DSE5525=START WITH cannot be less than minvalue. 



 
 
  

Daffodil DB          211 
 

DSE5526=START WITH cannot be greater than maxvalue. 

DSE5528=No record found for keys specified. 

DSE5529=U cannot get parentsessionid without starting any save point. 

DSE5530=Sessionid list contains only one element.No Start save point exists. 

DSE5531=SessionID’s are not hidden. Call hideSavepoint first. 

DSE5532=StartSavePoint NOT Started or no of start savepoints started are less than 2. 

DSE5533=Allow parallelsavepoint NOT started yet. 

DSE5534=Commit last savepoint first. 

DSE5535=Ignore parallel savepoint first. 

DSE5536=No element removed from list. 

DSE5537=Invalid instance of iterator {0}. 

DSE5538=No referenced table found for column {0}. 

DSE5539=Databasefile {0} is either removed or deleted from path. 

DSE5540=Invalid constraint name or cannot defer a constraint that is not defferable. 

DSE5541=Invalid constraint mode {0}. 

DSE5542=Can not specify {0} more than one time. 

DSE5543=System Database is not properly created, delete the directory from the path first. 

DSE5544=UserDatabase is not properly created,drop the database first. 

DSE5545=Value {0} is out of range of {1} data type. 

DSE5546=Value larger than specified precision allows for this column. 

DSE5547=Data type {0} is not convertable into data type {1}. 

DSE5548=Column name {0} appears more than once in the result column list. 

DSE5549=Invalid date-time result. 

DSE5551=XML file at specified Path {0} not found. 



 
 
  

Daffodil DB          212 
 

DSE5552=Blob data file at specified Path {0} not found. 

DSE5553=Clob data file at specified Path {0} not found. 

DSE5554=XML File Write Exception. 

DSE5555=Blob data file Write Exception. 

DSE5556=Clob data file Write Exception. 

DSE5557=Error while getting LOB data. 

DSE5558=Database is in Read Only Mode. 

DSE5560=Schedule {0} to be dropped does not exist. 

DSE5561=Schedule {0} already exists. 

DSE5562=Database {0} for which scheduler is added does not exist. 

DSE5564=Database to be backed up is in use. 

DSE5566=Database {0} to be restored already exists. 

DSE5567=Database {0} to be backed up already exists. 

DSE5568=Database {0} can not be restored. 

DSE5569=Database can not be restored with name {0}. 

DSE5570=Database {0} can not be backed up. 

DSE5571=Database can not be backed up with name {0}. 

DSE5572=Invalid path {0}. 

DSE5573=SystemDatabase and database {0} not compatible. 

DSE5574=Can’t take backup as Source Path And Destination Path are same. 

DSE5575=User {0} is not having privillege to take Backup. 

DSE5576=Database name can not be {0}. 

DSE5577=Cannot get Connection as Backup is under process. 

DSE5578=Adding Schedule is not supported on this version. 



 
 
  

Daffodil DB          213 
 

DSE5579=Backup correpted - some files are either removed or deleted from path - Start backup after 
removing all files from the path. 

DSE5581=Access denied. Save point allready started. 

DSE5582=Exception: Trigger in recursion exceeding count 16. 

DSE5583=Exception: Statement Trigger in recursion exceeding count 16. 

DSE5584= Table has been already dropped. 

DSE5590= Feature{0} not supported below Version3.0 

DSE5591= Version incompatible as executable jar doesn’t support Backward Compatibility 

DSE6001={0} is non-comparable data type, cannot be used in Distinct/Predicates/Union/Intersect 
queries. 

DSE6004=Invalid type {0} in Like predicate. 

DSE6005=Having Clause should not contain ContainsClause 

DSE6006=ORDER BY columns must appear in the select list if DISTINCT is contained in Select List. 

DSE6007=Expression {0} cannot be specified in search condition. 

DSE6008=Sequence number not allowed here. 

DSE6009=SubQuery is not allowed in order by clause. 

DSE6010=FullTextIndex name should be given if index exists on multiple column. 

DSE6011=Contains clause not supported for queries involving more than one table or view. 

DSE6012=Select Query is not supported in select list. 

DSE6013=Sequence is not allowed in Group by and order by clause 

DSE7001=Foreign key {0} has implicit reference to object {1} which does not have a primary key 
defined on it. 

DSE7002=Number of referencing columns in foreign key differs from number of referenced columns, 
table {0}. 

DSE7003=Foreign key {0} references invalid table {1}. 

DSE7005=Invalid column(s) {0} specified in CHECK constraint {1}. 



 
 
  

Daffodil DB          214 
 

DSE7006=Foreign key {0} references invalid column {1} in referenced table {2}. 

DSE7007=Foreign key {0} references invalid column {1} in referencing table {2}. 

DSE7008=Cannot alter table {0} because this table does not exist in database. 

DSE7009=Cannot drop the table {0}, because it does not exist in the database. 

DSE7010=Cannot drop the view {0}, because it does not exist in the database. 

DSE7051=[clientstatement]you cannot SET client parameters for the query {0}. 

DSE7052=[rsb]one record is already taken for insertion FIRST COMMIT that and then try again. 

DSE7053=[rsb]Invalid call. 

DSE7054=[rsb]you cannot call update row on inserted record. 

DSE7055=[rsb]there is already one record in UPDATE state. 

DSE7056=[rsb]this record was not updated. 

DSE7057=Cannot drop the index {0} from table {1}, because it does not exist in the database. 

DSE7058=User {0} already exists in the database. 

DSE7059=Cannot drop the user {0}, because it does not exist. 

DSE7060=Cannot create an index on {0}, because this table does not exist in database. 

DSE7061=Udt support not available. 

DSE7062=Duplicate username listed. 

DSE7063=Invalid interval {0}. 

DSE7064=Column count cannot be greater than one. 

DSE7065=Cannot drop the trigger {0}, because it does not exist in the database. 

DSE7066=Invalid grantee in grant statement. 

DSE7067=Option {0} can be defined at most once. 

DSE7068=HAS RECORD cannot be used in Group by clause. 

DSE7069=Illegal Mapping. 



 
 
  

Daffodil DB          215 
 

DSE7070=Count cannot be less than or equal to zero, specified count is {0}. 

DSE7071=Chained table info for table {0} not found. 

DSE7072=Table details mapping does not contain table details {0}. 

DSE7073=Table {0} already has a primary key defined on it. 

DSE7074=More than one key specified in column level FOREIGN KEY constraint, table {0}. 

DSE7075=ALTER TABLE ADD CONSTRAINT statement conflicted with FOREIGN KEY 
constraint {0}. The conflict occurred in table {1}. 

DSE7076=Catalog {0} does not exist. 

DSE7077=Column names in each view must be unique. Column name {0} in view {1} is specified 
more than once. 

DSE7078=ALTER TABLE DROP COLUMN statement conflicted with FOREIGN KEY constraint 
{0}. The conflict occurred in table {1}, column {2}. 

DSE7079=ALTER TABLE ALTER COLUMN SET DEFAULT statement failed because column {0} 
does not exist in table {1}. 

DSE7080=ALTER TABLE ALTER COLUMN DROP DEFAULT statement failed because column 
{0} does not exist in table {1}. 

DSE7081=ALTER TABLE DROP COLUMN statement conflicted with VIEW {0}. The conflict 
occurred in table {1}, column {2}. 

DSE7082=ALTER TABLE DROP COLUMN statement conflicted with TRIGGER {0}. The conflict 
occurred in table {1}, column {2}. 

DSE7083=ALTER TABLE DROP COLUMN statement conflicted with CHECK constraint {0}. The 
conflict occurred in table {1}, column {2}. 

DSE7084=ALTER TABLE ADD CONSTRAINT statement conflicted with UNIQUE constraint {0}. 
The conflict occurred in table {1}. 

DSE7085=ALTER TABLE ADD CONSTRAINT statement conflicted with PRIMARY KEY 
constraint {0}. The conflict occurred in table {1}. 

DSE7086=ALTER TABLE ADD CONSTRAINT statement conflicted with CHECK constraint {0}. 
The conflict occurred in table {1}. 

DSE7087=ALTER TABLE ADD COLUMN statement conflicted with PRIMARY KEY constraint 
{0}.ALTER TABLE only allows columns to be added that can contain nulls or have a DEFAULT 
definition specified. Column {1} cannot be added to table {2} because it does not allow nulls and does 
not specify a DEFAULT definition. 



 
 
  

Daffodil DB          216 
 

KEY constraint {0}. The conflict occurred in table {1}. 

DSE7088=ALTER TABLE ADD COLUMN statement conflicted with UNIQUE KEY constraint {0}. 
The conflict occurred in table {1}. 

DSE7089=ALTER TABLE ADD COLUMN statement conflicted with CHECK CONSTRAINT 
{0}.ALTER TABLE only allows columns to be added that can contain nulls or have a DEFAULT 
definition specified. Column {1} cannot be added to table {2} because it does not allow nulls and does 
not specify a DEFAULT definition. 

DSE7090=Database {0} specified is either removed or deleted from path. 

DSE7091=HAS RECORD ColumnDetail contains invalid table name(s) {0}. 

DSE7092=Duplicate column name {0}. 

DSE7093=Alias Name Should Be specified with Aggregate/Expressional or Scalar Functional 
columns. 

DSE7094=Invalid boolean type {0}. 

DSE7095=ColumnNames specified are not equal in length. 

DSE7096=Node size should be greater than 2. 

DSE7097=Invalid Instance Of Iterator {0} 

DSE7098=Invalid status in Top Iterator 

DSE7099=Iterator for table not found 

DSE8000=Position not set 

DSE8001=Existing value and delete event fired 

DSE8002=Specified System table {0} not found 

DSE8003=Table details mismatch 

DSE8004=Column name for index passed {0} is not Found 

DSE8005=Index not found of reference {0} in references {1} 

DSE8006=Invalid join type {0} 

DSE8007=Query passed is null. 

DSE8008=Column {0} is not a functional column. 



 
 
  

Daffodil DB          217 
 

DSE8009=Invalid number 

DSE8010=DROP TABLE statement conflicted with VIEW {0}. The conflict occurred in table {1}. 

DSE8011=DROP TABLE statement conflicted with TRIGGER {0}. The conflict occurred in table 
{1}. 

DSE8012=DROP TABLE statement conflicted with CHECK constraint {0}. The conflict occurred in 
table {1}. 

DSE8013=DROP TABLE statement conflicted with FOREIGN KEY constraint {0}. The conflict 
occurred in table {1}. 

DSE8014=DROP VIEW statement conflicted with VIEW {0}. The conflict occurred in view {1}. 

DSE8015=DROP VIEW statement conflicted with TRIGGER {0}. The conflict occurred in view {1}. 

DSE8016=Inconsistent data type, value should be characterstringliteral 

DSE8017=’’DATE’’ Keyword must specify in default clause for column {0} 

DSE8018=Inconsistent data type, value should be booleanliteral for column {0} 

DSE8019=Default value is too large for column {0} 

DSE8021=Method {0} is Wrongly Called For SelectedColumnIterator 

DSE8022=Invalid timestamp data type value. Timestamp format must be yyyy-mm-dd hh:mm:ss.fff. 

DSE8023=Invalid time data type value. Time format must be hh:mm:ss. 

DSE8024=Invalid date data type value. Date format must be yyyy-mm-dd. 

DSE8025=Acess Denied Do not have Select privileges on column {0} of table {1} 

DSE8026=Invalid or Parameterised queries 

DSE8027=Invalid column(s) {0} specified in trigger condition for trigger {1} 

DSE8028=Invalid column(s) {0} specified in trigger statement for trigger {1} 

DSE8029=Invalid default clause for data type {0} 

DSE8030=Object type {0} is not compatiable with privilege type {1} 

DSE8031=Row and table simuntaneoulsy can not be present in trigger definition 

DSE8032=Old or new values alias list can not be specified for Statement trigger 



 
 
  

Daffodil DB          218 
 

DSE8033=Invalid country code {0} 

DSE8034=Invalid Language code {0} 

DSE8035=Loop statement does not contain terminating statement 

DSE8036=Beginning label should be specified in case ending label used 

DSE8037=Beginning label and ending label used should match for a statement 

DSE8038=Invalid label used in leave or iterate statement 

DSE8039=Duplicate variable declaration 

DSE8040=Cursor {0} already closed 

DSE8041=No value found for parameter {0} 

DSE8042=Only prepared statement like functionality supported in case of statements other than CALL 
statement 

DSE8043=Only NEXT operation allowed on non scrollable curosr 

DSE8044=Cardinality mismatch between query specification and fetch target list 

DSE8045=Invalid Variable name in fetch target list 

DSE8046=Cursor in non updatable 

DSE8047=Table name {0} not present in query specification of cursor {1} 

DSE8047=Variable {0} not declared in procedure {1} 

DSE8049=The maximum size for all index columns can not exceed {0} bytes. The index {1} with size 
{2} bytes can not be created. 

DSE8050=such column list already indexed. 

DSE8051=Cursor {0} either not opened or has been closed 

DSE8052=Either EXECUTE not called or command does not produce result set 

DSE8053=Either URL or dataSourceName must be specified to create connection 

DSE8054=No such DataSource {0} 

DSE8055=Data Source name can not be null 



 
 
  

Daffodil DB          219 
 

DSE8056=Transaction Isolation Level passed is Not Valid 

DSE8057=Invalid ResultSetType {0} 

DSE8058=Invalid concurrency {0} 

DSE8059=UDTs are not supported 

DSE8060=Parameter Index can not be less than 1,passed parameter index is {0} 

DSE8061=Not A Valid Direction {0} 

DSE8062=In case of type Forward only ,only valid direction is fetch forward 

DSE8063=Fetch Size can not be less than 0 

DSE8064=UpdateRow called while curosr is on newly insert row 

DSE8065=Invalid cursor position 

DSE8066=Before Calling insertRow ,cursor must be on insertrow 

DSE8067=Auto column value can not be NULL 

DSE8068=Do not have rights to revoke privileges on object {0} 

DSE8069=length/precision/largeobjectlength can not zero for datatypes 

DSE8090=Cursor statements cannot be executed through Daffodil DB Shell/Daffodil DB Browser. 

DSE8091=Invalid colunm Indexes for GeneratedKeys 

DSE8092=Invalid role {0}. 

DSE8093=The role can not be granted to itself or any of its applicable roles 

DSE8094=Invalid role/user {0}. 

DSE8095=No such role authorization descriptor found to delete. 

DSE8096=Role to be granted does not lie in applicable role of grantor {0} or doesn’t have WITH 
ADMIN OPTION. 

DSE8097=Currently active User {0} can not be dropped 

DSE8098=Role {0} is currently active/Lies in applicable roles. 

DSE8100=Incompatible data type {0} and {1}. 



 
 
  

Daffodil DB          220 
 

DSE8101=Syntax error converting data type {0} to {1}. 

DSE8102=Cannot create index on view 

DSE8103=object can not be created with name greater than 128 characters 

DSE8104=System or Administrator user can not be dropped 

DSE8105=Do not have CREATE/DROP user permission. 

DSE8106=Syntax error converting {0} data type to date data type. 

DSE8107=Length {0} exceeds premissable values for length or is invalid. 

DSE8108=Invalid check constraint condition {0} 

DSE8109=Invalid column name/references in triggered action 

DSE8110=Do not have DROP permission on {0} 

DSE8111=Invalid start index passed to the {0} function. Start index can not be less than one. 

DSE8112=Invalid length parameter passed to the {0} function. Length can not be negative. 

DSE8113=repeat counter too large. 

DSE8114=Invalid counter passed to the {0} function. Counter can not be negative. 

DSE8116=Cannot alter domain {0} because this domain does not exist in database. 

DSE8115=can not add column as check constraint applied is violated. 

DSE8117= {0} length can not exceed {1} 

DSE8118=Problem in creating file {0} either it contains illegal characters or blank spaces 

DSE8119=Invalid columnName or indexName used in ContainClause{0} 

DSE6002=Blank or Stop words cannot be used for searching. 

DSE6003=For Update Option cannot be used if query contains multiple tables, view, group by or 
having clause. 

DSE8120=Specified class is not valid {0} 

DSE8121=wrong name: {0} 

DSE8122=Specified jar name is not valid {0} 



 
 
  

Daffodil DB          221 
 

DSE8123=Number of parameters in procedure declaration does not match with number of parameters 
in java method 

DSE8124=Datatype mismatch in parameters at {0} 

DSE8125=Data Type not supported 

DSE8126=Method {0} does not exist in {1} 

DSE8127=Class does not have <init>(java.sql.Connection) constructor 

DSE8128 =Contains Clause of the query contained only ignored words 

DSE8129={0} must be the current user. 

DSE8131=Role {0} not granted to user {1} 

DSE8132=Do not have sufficient privileges for select 

DSE8133=CurrentUser/CurrentRole does not have execute privileges on {0}. 

DSE8134=Incorrect alias {0} 

DSE8135=Alias name not provided for column {0} 

DSE8136=This Feature not supported in version {0} 

DSE8137=Do not have sufficient privileges for create schema with {0} catalog. 

DSE8138=Contain clause not supported in searched condition. 

DSE8139={0} 

DSE8141=Number of arguments exceed actual number of columns 

DSE8142=Parameterized statement not allowed in triggers. 

DSE8143=User/Role {0} has Insufficient privileges. 

DSE8144=Length of column {0} should be equal to 1031. 

DSE8145=Error while executing {0} method 

DSE8146=’’TIME’’ Keyword must specify in default clause for column {0} 

DSE8147=’’TIMESTAMP’’ Keyword must specify in default clause for column {0} 

DSE8148=Value larger than specified precision not allowed for column {0} 



 
 
  

Daffodil DB          222 
 

DSE8149=Data type value is invalid for column {0} / Date format must be yyyy-mm-dd. 

DSE8150=length/precision/largeobjectlength of datatype can not zero for column {0} 

DSE1186=Cursor {0} is not scrollable 

DSE8151=Do not have CREATE/DROP database permission for {0} session. 

DSE8152=Contains clause not allowed in view definition. 

DSE8153={0} in triggered action for trigger {1} 

DSE8154=More than one primary key constraint can not be applied on column {0} 

DSE8155=More than one unique key constraint can not be applied on column {0} 

DSE8156=More than one not null constraint can not be applied on column {0} 

DSE8157=Both primary key and unique key constraint’’s can not be applied on column {0} 

DSE8158=Column {0} should exist on search condition 

DSE8159=Parameters statement not allowed in View {0} 

DSE8160=Exception: Procedure in recursion exceeding count 32 

DSE8161=Unique/Primary key constraint already exist on table {0} 

DSE8162=Query expression’’s length {0} can not exceed ’’4192’’ characters for view {1}. 

DSE8163=ALTER TABLE DROP COLUMN statement conflicted with 
PRIMARY/UNIQUE/FOREIGN KEY constraint {0}. The conflict occurred in table {1}, column {2}. 

DSE8164=Parameterised query not allowed in Stored Procedure. 

DSE8165=Default value’’s length not supported up to ’’1024’’. 

DSE8166=Current session does not have rights on schema {0} 

DSE8167=Grantor {0} does not have any privilege with grant option on object {1}. 

DSE8168=Can not create default schema {0}. 

DSE8169=Can not drop default schema {0}. 

DSE8170=Result of repeat function exceeds the maximum length of char data type. 

DSE8171=Constraint {0} should be less than 128 characters 



 
 
  

Daffodil DB          223 
 

DSE8172=Parameterized statement not allowed in domains. 

DSE8173=Invalid parameter {0}. 

DSE8174=Aggregate function not allowed in procedure call. 

DSE8175=ColumnName/VariableName {0} is invalid/not declared. 

DSE8176=Current user {0} must have references rights on column {1} of table {2}. 

DSE8177=The value you entered is not consistent with the data type or length of the parameter. 

DSE8178=Datatype {0} should be predefined datatype. 

DSE8179=User {0} must be the database owner OR admin user. 

DSE8180=Database can not be created with user {0}. 

DSE8181=Database owner {0} can not be dropped. 

DSE8182=Procedure {0} does not exist in databse. 

DSE8183=Can not declare variable {0} with same name. 

DSE8184=SubQuery not allowed in procedure parameters. 

DSE8185=Role {0} does not exist in database. 

DSE8186=Trigger table alias does not match with alias {0} used in when condition. 

DSE8187=Can not add multiple unique OR primary key constraint on same column in table {0} 

DSE8188=Acess Denied Do not have Usage privileges on domain {0} 

DSE8189=Schema statements(Create, Alter, And Drop) not allowed in procedures. 



 
 
  

Daffodil DB          224 
 

2. Country Code Table 
 

Country Name 
Country 
Code Country Name Country Code 

Andorra AD Botswana BW 
United Arab Emirates AE Belarus BY 
Afghanistan AF Belize BZ 
AG AG Canada CA 
Anguilla AI CC CC 

Albania AL 
Central African 
Republic CF 

Armenia AM Congo CG 
Netherlands Antilles AN Switzerland CH 
Angola AO Côte d'Ivoire CI 
AQ AQ CK CK 
Argentina AR Chile CL 
AS AS Cameroon CM 
Austria AT China CN 
Australia AU Colombia CO 
Aruba AW Costa Rica CR 
Azerbaijan AZ Cuba CU 
Bosnia and 
Herzegovina BA Cape Verde CV 
Barbados BB CX CX 
Bangladesh BD Cyprus CY 
Belgium BE Czech Republic CZ 
Burkina Faso BF Germany DE 
Bulgaria BG Djibouti DJ 
Bahrain BH Denmark DK 
Burundi BI Dominica DM 
Benin BJ Dominican Republic DO 
Bermuda BM Algeria DZ 
Brunei BN Ecuador EC 
Bolivia BO Estonia EE 
Brazil BR Egypt EG 
Bahamas BS Western Sahara EH 
Bhutan BT Eritrea ER 
BV BV Spain ES 

 



 
 
  

Daffodil DB          225 
 

 

Country Name  Country Code Country Name  Country Code 
Ethiopia ET Indonesia ID 
Finland FI Ireland IE 
Fiji FJ Israel IL 
FK FK India IN 
Micronesia FM IO IO 
FO FO Iraq IQ 
France FR Iran IR 
FX FX Iceland IS 
Gabon GA Italy IT 
United Kingdom GB Jamaica JM 
GD GD Jordan JO 
Georgia GE Japan JP 
French Guiana GF Kenya KE 
Ghana GH Kyrgyzstan KG 
GI GI Cambodia KH 
GL GL Kiribati KI 
Gambia GM Comoros KM 
Guinea GN KN KN 
Guadeloupe GP North Korea KP 
Equatorial 
Guinea GQ South Korea KR 
Greece GR Kuwait KW 
GS GS KY KY 
Guatemala GT Kazakhstan KZ 
GU GU Laos LA 
Guinea-Bissau GW Lebanon LB 
Guyana GY LC LC 
Hong Kong HK Liechtenstein LI 
HM HM Sri Lanka LK 
Honduras HN Liberia LR 
Croatia HR Lesotho LS 
Haiti HT Lithuania LT 
Hungary HU Luxembourg LU 

 



 
 
  

Daffodil DB          226 
 

 

Country Name Country Code Country Name Country Code 
Latvia LV NR NR 
Libya LY Niue NU 
Morocco MA New Zealand NZ 
Monaco MC Oman OM 
Moldova MD Panama PA 
Madagascar MG Peru PE 
MH MH French Polynesia PF 

Macedonia MK 
Papua New 
Guinea PG 

Mali ML Philippines PH 
Myanmar MM Pakistan PK 
Mongolia MN Poland PL 
MO MO PM PM 
MP MP PN PN 
Martinique MQ Puerto Rico PR 
Mauritania MR Portugal PT 
Montserrat MS PW PW 
Malta MT Paraguay PY 
Mauritius MU Qatar QA 
MV MV RE RE 
MW MW Romania RO 
Mexico MX Russia RU 
Malaysia MY Rwanda RW 
Mozambique MZ Saudi Arabia SA 
Namibia NA SB SB 
New Caledonia NC Seychelles SC 
Niger NE Sudan SD 
NF NF Sweden SE 
Nigeria NG Singapore SG 
Nicaragua NI SH SH 
Netherlands NL Slovenia SI 
Norway NO SJ SJ 
Nepal NP Slovakia SK 

 



 
 
  

Daffodil DB          227 
 

 
Country Name Country Code Country Name  Country Name 
Slovakia SK Uganda UG 
Sierra Leone SL UM UM 
SM SM United States US 
Senegal SN Uruguay UY 
Somalia SO Uzbekistan UZ 
Suriname SR Vatican VA 
ST ST VC VC 
El Salvador SV Venezuela VE 

Syria SY 
British Virgin 
Islands VG 

Swaziland SZ 
U.S. Virgin 
Islands VI 

TC TC Vietnam VN 
Chad TD Vanuatu VU 
French Southern 
Territories TF WF WF 
Togo TG WS WS 
Thailand TH Yemen YE 
Tajikistan TJ Mayotte YT 
Tokelau TK Yugoslavia YU 
Turkmenistan TM South Africa ZA 
Tunisia TN Zambia ZM 
Tonga TO Zaire ZR 
East Timor TP Zimbabwe ZW 
Turkey TR   
Trinidad and 
Tobago TT   
TV TV   
Taiwan TW   
Tanzania TZ   
Ukraine UA   

 

 



 
 
  

Daffodil DB          228 
 

3. Language Code Table 
 

Language Name Language Code Language Name Language Code 
Afar aa French fr 
Abkhazian ab Frisian fy 
Afrikaans af Irish ga 
Amharic am Scots Gaelic gd 
Arabic ar Galician gl 
Assamese as Guarani gn 
Aymara ay Gujarati gu 
Azerbaijani az Hausa ha 
Bashkir ba Hebrew he 
Byelorussian be Hindi hi 
Bulgarian bg Croatian hr 
Bihari bh Hungarian hu 
Bislama bi Armenian hy 
Bengali bn Interlingua ia 
Tibetan bo Indonesian id 
Breton br Interlingue ie 
Catalan ca Inupiak ik 
Corsican co Indonesian in 
Czech cs Icelandic is 
Welsh cy Italian it 
Danish da Inuktitut iu 
German de Hebrew iw 
Bhutani dz Japanese ja 
Greek el Yiddish ji 
English en Javanese jw 
Esperanto eo Georgian ka 
Spanish es Kazakh kk 
Estonian et Greenlandic kl 
Basque eu Cambodian km 
Persian fa Kannada kn 
Finnish fi Korean ko 
Fiji fj Kashmiri ks 
Faroese fo Kurdish ku 

 



 
 
  

Daffodil DB          229 
 

 

Language Name Language Code Language Name Language Code 
Kirghiz ky Slovak sk 
Latin la Slovenian sl 
Lingala ln Samoan sm 
Laothian lo Shona sn 
Lithuanian lt Somali so 
Latvian (Lettish) lv Albanian sq 
Malagasy mg Serbian sr 
Maori mi Siswati ss 
Macedonian mk Sesotho st 
Malayalam ml Sundanese su 
Mongolian mn Swedish sv 
Moldavian mo Swahili sw 
Marathi mr Tamil ta 
Malay ms Telugu te 
Maltese mt Tajik tg 
Burmese my Thai th 
Nauru na Tigrinya ti 
Nepali ne Turkmen tk 
Dutch nl Tagalog tl 
Norwegian no Setswana tn 
Occitan oc Tonga to 
Oromo (Afan) om Turkish tr 
Oriya or Tsonga ts 
Punjabi pa Tatar tt 
Polish pl Twi tw 
Pashto (Pushto) ps Uighur ug 
Portuguese pt Ukrainian uk 
Quechua qu Urdu ur 
Rhaeto-Romance rm Uzbek uz 
Kirundi rn Vietnamese vi 
Romanian ro Volapuk vo 
Russian ru Wolof wo 
Kinyarwanda rw Xhosa xh 
Sanskrit sa Yiddish yi 
Sindhi sd Yoruba yo 
Sangho sg Zhuang za 
Serbo-Croatian sh Chinese zh 
Sinhalese si Zulu zu 

 




